

DESCRIPTION

Passivated triacs in a plastic envelope, intended for use in applications requiring high bidirectional transient and blocking voltage capability and high thermal cycling performance. Typical applications include motor control, industrial and domestic lighting, heating voltages and static switching.

TO-220

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS		UNIT
Repetitive Peak Off State Voltage	V _{DRM}	800*	-800	V
RMS On-state Current (Full sine wave; T _{mb} ≤102°C)	I _T (RMS)	8		A
Non-Repetitive Peak. On-State Current (Full sine wave; T _j =25°C prior to surge) t=20ms t=16.7ms	I _{TSM}	65 71		A
I ² t For Fusing t=10ms	I ² t	21		A ² s
Repetitive Rate of Rise of On-state Current after Triggering I _{TM} =12A; I _G =0.2A, dI _G /dt=0.2A/μs	dI _T / dt	50 50 50 10		A/μs
Peak Gate Voltage	V _{GM}	5		V
Peak Gate Current	I _{GM}	2		A
Peak Gate Power	P _{GM}	5		W
Average Gate Power (Over any 20ms period)	P _{G(AV)}	0.5		W
Operating Junction Temperature	T _j	125		°C
Storage Temperature	T _{stg}	-40~150		°C

*Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed 6A/μs.

THERMAL RESISTANCES

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Thermal Resistance Junction to Mounting Base Full cycle Half cycle	R _{th} j-mb			2.0 2.4	K/W
Thermal Resistance Junction to Ambient In free air	R _{th} j-a		60		K/W

ELECTRICAL CHARACTERISTICS (T_j=25°C,unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
STATIC CHARACTERISTICS						
Gate Trigger Current	I _{GT}	V _D =12V, I _T =0.1A T2+G+ T2+G- T2-G- T2-G+		5 8 11 30	35 35 35 70	mA
Latching Current	I _L	V _D =12V, I _{GT} =0.1A T2+G+ T2+G- T2-G- T2-G+		7 16 5 7	30 45 30 45	mA
On-State Voltage	V _T	I _T =10A		1.3	1.65	V
Gate Trigger Voltage	V _{GT}	V _D =12V, I _T =0.1A V _D =400V, I _T =0.1A T _j =125°C	0.25	0.4		V
Holding Current	I _H	V _D =12V, I _{GT} =0.1A		5	20	mA
Off-state Leakage Current	I _D	V _D =V _{DRM(max)} , T _j =125°C		0.1	0.5	mA
DYNAMIC CHARACTERISTICS						
Critical Rate of Rise of off-state Voltage	dV _D /dt	V _{DM} =67% V _{DRM(max)} , T _j =125°C Exponential waveform, Gate open circuit	100	250		V/μs
Critical Rate of Change of commutating Voltage	dV _{com} /dt	V _{DM} =400V, T _j =95°C, I _{T(RMS)} =8A dI _{com} /dt =3.6A/ms Gate open circuit		20		V/μs
Gate Controlled Turn-on Time	t _{GT}	I _{TM} =12A, V _D =V _{DRM(max)} , I _G =0.1A dI _G /dt=5A/μs		2		μs

TYPICAL CHARACTERISTICS

Figure 1. Maximum on-state Dissipation P_{tot} vs RMS On-state Current, I_{TRMS} , Where α = conduction Angle.

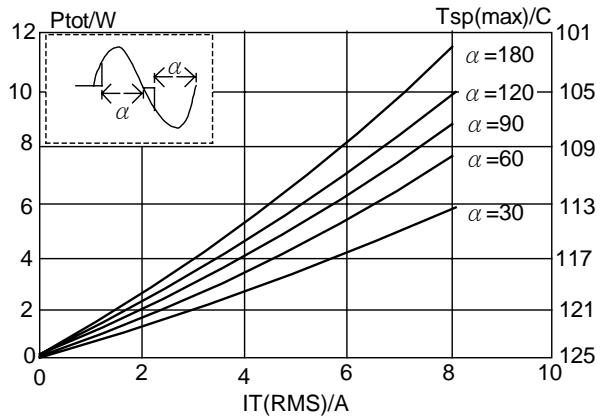


Figure 4. Maximum Permissible RMS Current I_{TRMS} vs mounting base Temperature T_{mb}

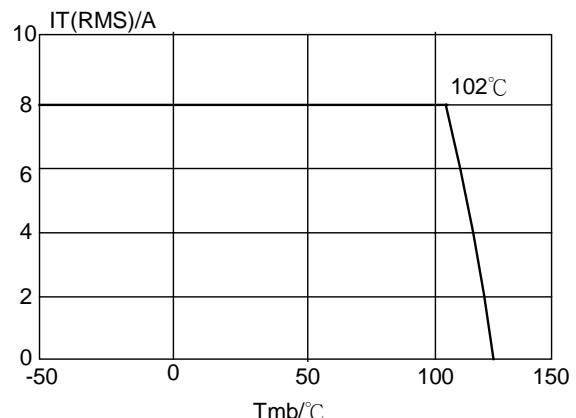


Figure 2. Maximum Permissible Non-repetitive Peak On-state Current I_{TSM} , vs Pulse Width t_p , for Sinusoidal Currents, $t_p = 20ms$

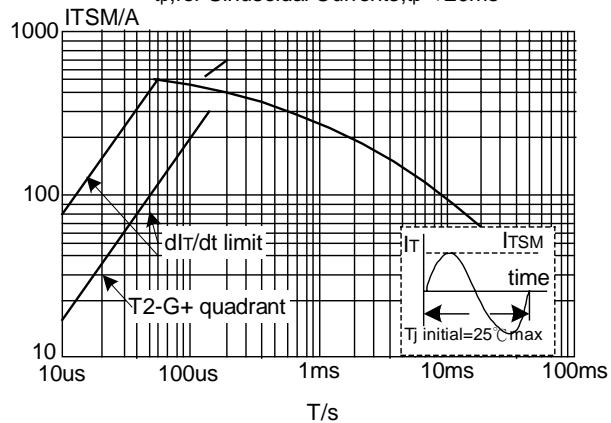


Figure 5. Maximum Permissible Repetitive RMS on-state Current I_{TRMS} , vs Surge Duration, for Sinusoidal Currents, $f=50Hz$; $T_{mb} = 102^{\circ}C$

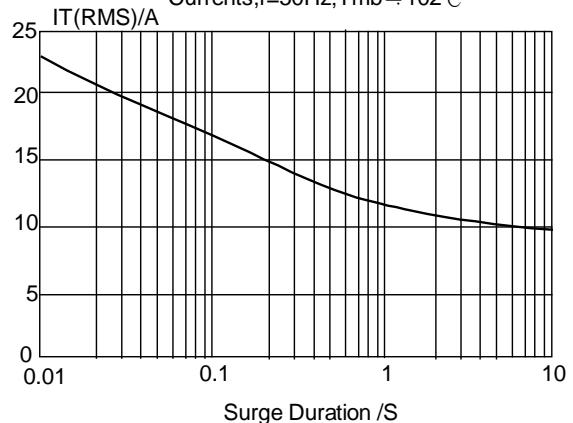


Figure 3. Maximum Permissible Non-Repetitive peak on-state Current I_{TSM} , vs Number of Cycles, for Sinusoidal Currents, $f=50Hz$

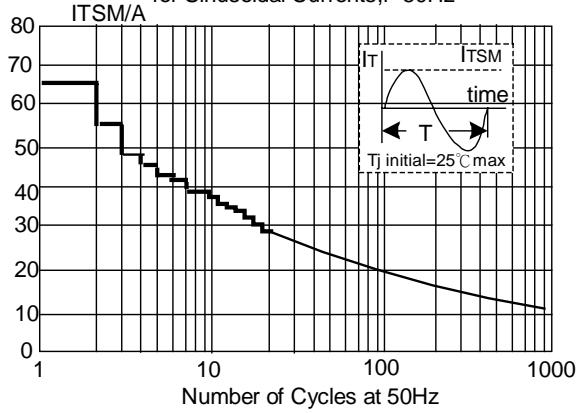


Figure 6. Normalised Gate Trigger Voltage $\frac{V_{GT}(T_j)}{V_{GT}(25^{\circ}C)}$, vs Junction Temperature T_j

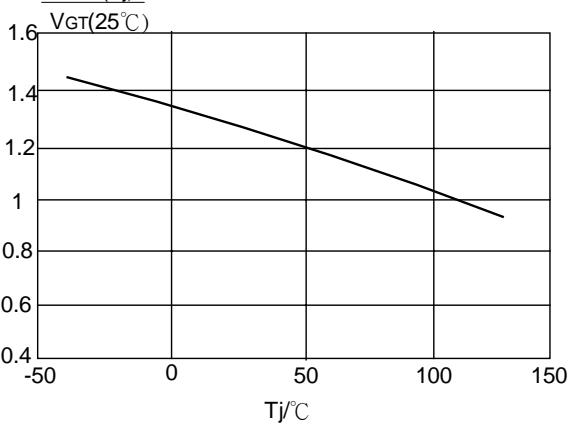


Figure 7.Normalised Gate Trigger Current
 $I_{GT}(Tj)/I_{GT}(25^{\circ}\text{C})$,vs Junction Temperature Tj

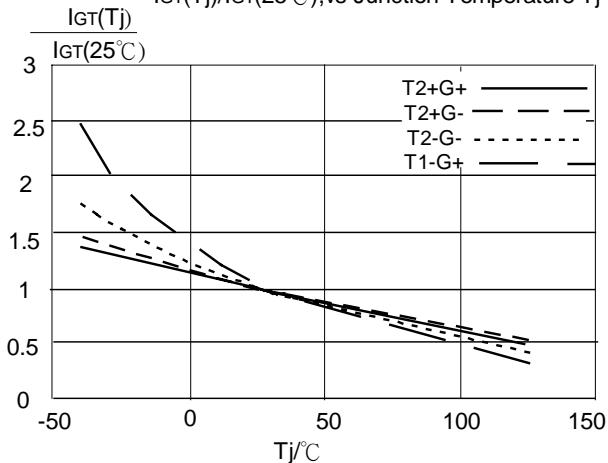


Figure 8.Normalised Latching Current
 $I_L(Tj)/I_L(25^{\circ}\text{C})$,vs Junction Temperature Tj

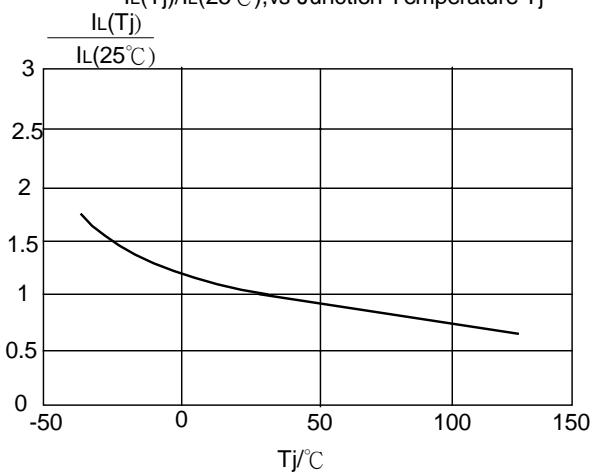


Figure 9.Normalised Holding Current
 $I_H(Tj)/I_H(25^{\circ}\text{C})$,vs Junction Temperature Tj

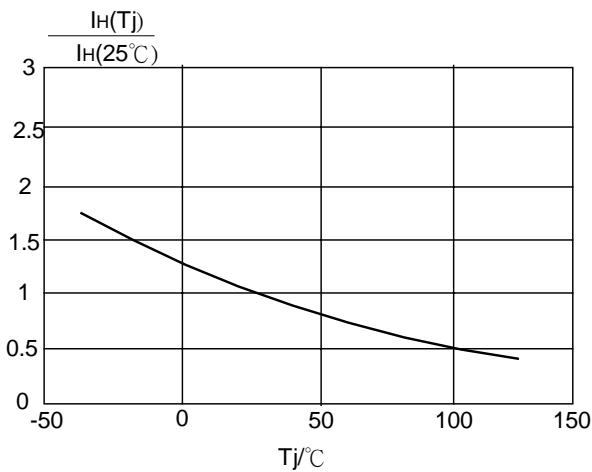


Figure 10.Typical and Maximum
On-state Characteristic

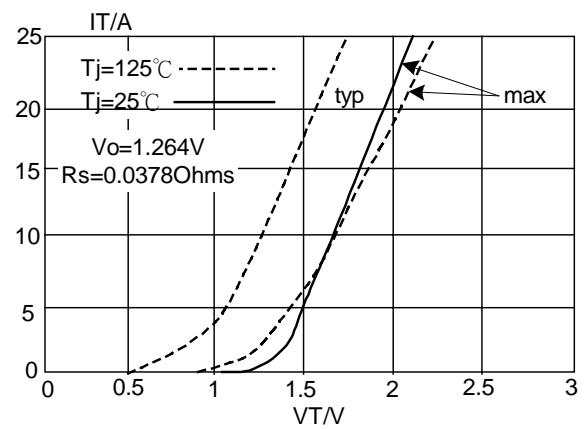
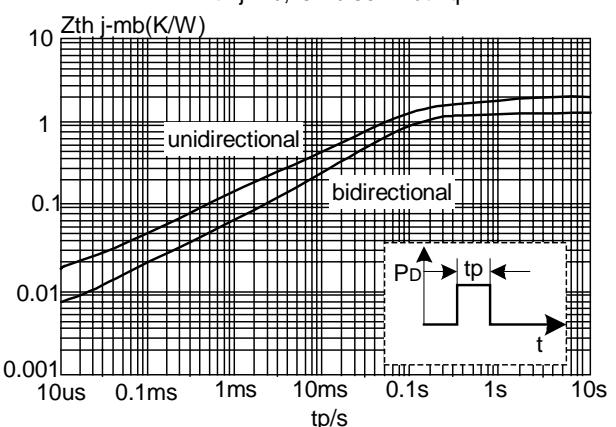
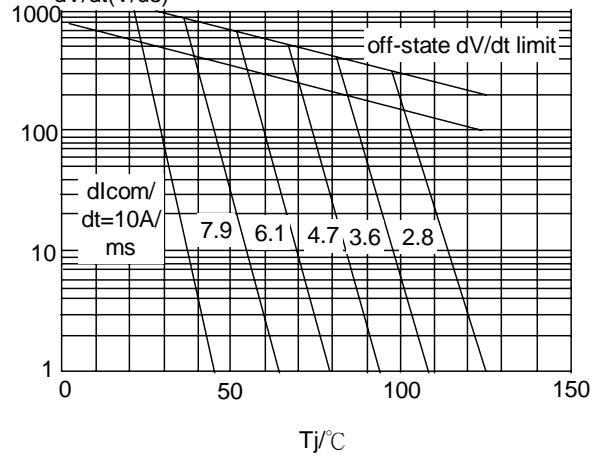
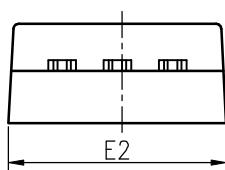
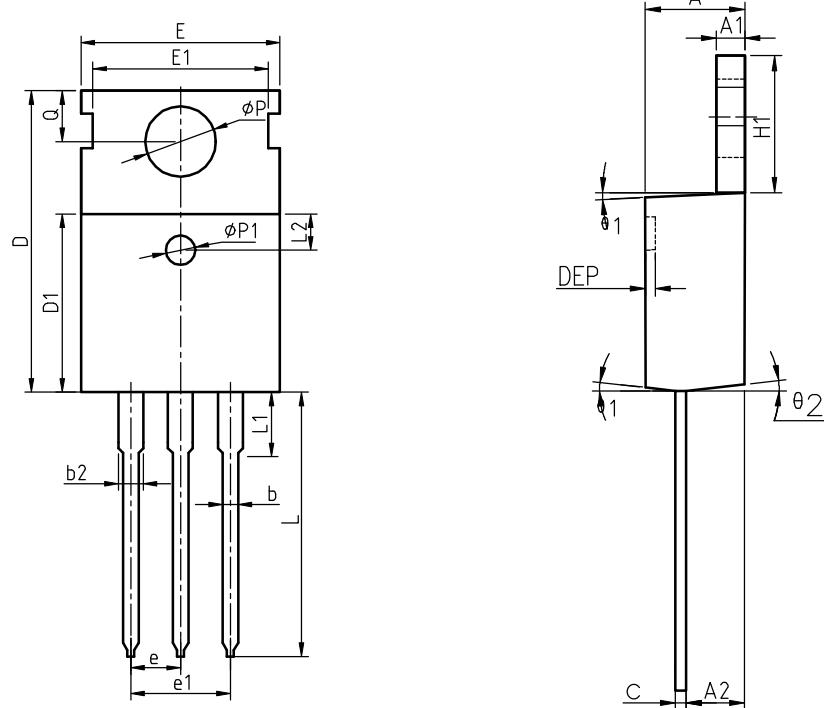


Figure 11.Transient Thermal Impedance
 $Z_{th\ j\-\text{mb}}(\text{K/W})$,vs Pulse Width tp



Figure 12.Typical commutation dV/dt vs junction
temperature,parameter commutation dI/dt .The triac should
commute when the dV/dt is below the value on the
appropriate curve for pre-commutation dI/dt
 $dV/dt(\text{V/us})$

Package Information

TO-220

COMMON DIMENSIONS

SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	4.40	4.57	4.70	0.173	0.180	0.185
A1	1.27	1.30	1.33	0.050	0.051	0.052
A2	2.35	2.40	2.50	0.093	0.094	0.098
b	0.77	0.80	0.90	0.030	0.031	0.035
b2	1.17	1.27	1.36	0.046	0.050	0.054
c	0.48	0.50	0.56	0.019	0.020	0.022
D	15.40	15.60	15.80	0.606	0.614	0.622
D1	9.00	9.10	9.20	0.354	0.358	0.362
DEP	0.05	0.10	0.20	0.002	0.004	0.008
E	9.80	10.00	10.20	0.386	0.394	0.402
E1	-	8.70	-	-	0.343	-
E2	9.80	10.00	10.20	0.386	0.394	0.402
e		2.54	BSC		0.100	BSC
e1		5.08	BSC		0.200	BSC
H1	6.40	6.50	6.60	0.252	0.256	0.260
L	12.75	13.50	13.65	0.502	0.531	0.537
L1	-	3.10	3.30	-	0.122	0.130
L2		2.50	REF		0.098	REF
P	3.50	3.60	3.63	0.138	0.142	0.143
P1	3.50	3.60	3.63	0.138	0.142	0.143
Q	2.73	2.80	2.87	0.107	0.110	0.113
θ1	5°	7°	9°	5°	7°	9°
θ2	1°	3°	5°	1°	3°	5°
θ3	1°	3°	5°	1°	3°	5°

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.