

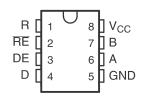
DESCRIPTION

The SN65LBC184DRG4 is a half-duplex RS-485 transceiver with ±15kV IEC 61000-4-2 contact discharge protection. The SN65LBC184DRG4 contains one driver and one receiver. The device features fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This means that the receiver output will be logic high even if all transmitters on a terminated bus are disabled.

The SN65LBC184DRG4 features reduced slew-rate driver that minimizes EMI and reduces reflections caused by improperly terminated cables, allowing error-free data transmission up to 500kbps. The SN65LBC184DRG4 has a 1/8-unit load receiver input impedance that allows up to 256 transceivers on the bus.

FEATURES

TIA/EIA RS-485/RS-422 compliant ESD protection Integrated Transient Voltage Suppression Contact discharge ±15 KV


Data rates: 500 kbps

Half-duplex Reduced slew rates for low EMI Common-mode input range: -7 V to +12 V

APPLICATIONS

RS-485 Communications
Level Translators
Transceivers for EMI-Sensitive Applications
Industrial Control Local Area Networks
Energy Meter Networks
Lighting Systems

PIN CONFIGURATION

SOP-8(SOIC-8)

Pin Functions

P	IN	I/O	DESCRIPTION		
NAME	NO.	1/0	DESCRIPTION		
Α	6	Bus input/output	Driver output or receiver input (complementary to B)		
В	7	Bus input/output	Driver output or receiver input (complementary to A)		
D	4	Digital input	Driver data input		
DE	3	Digital input	Active-HIGH driver enable		
GND	5	Reference potential	Local device ground		
R	1	Digital output	Receiver data output		
RE	2	Digital input	Active-LOW receiver enable		
V _{CC}	8	Supply	4.75-V to 5.25-V supply		

FEATUER DESCRIPTION

Transmitting					
	Inputs	Outputs			
/RE	DE	DI	В	Α	
Х	1	1	0	1	
Х	1	0	1	0	
0	0	Х	High-Z	High-Z	
1	0	Х	Shutdown		

Receiving						
In	puts	Outputs				
/RE	DE	A-B	RO			
0	Х	≥-0.05V 1				
0	Х	≤-0.2V	0			
0	Х	Open/shorted	1			
1	1	X	High-Z			
1	0	Х	Shutdown			

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Units V	
Power Supply	Vcc	+7		
Control Input Voltage	/RE, DE	-0.3 to V _{CC} +0.3	٧	
Transmitter Input Voltage	DI	-0.3 to V _{CC} +0.3	V	
Transmitter Output Voltage	A, B	-8 to +13	V	
Receiver Input Voltage	A, B	-8 to +13	V	
Receiver Output Voltage	RO	-0.3 to V _{CC} +0.3	V	
Operating Temperature		-25 to +85	$^{\circ}\!\mathbb{C}$	

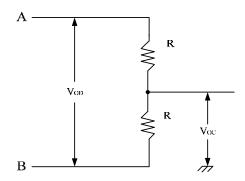
RECOMMENDED OPERATING CONDITIONS

(V_{CC}=+5V±5%, T_A=-40 °C \sim +85 °C , Typical Values are V_{CC}=+5V and T_A=25 °C) (Note 1)

Parameter	Symbol	Condition	ıs	MIN	TYP	MAX	UNITS
Power Supply	Vcc			4.5		5.5	V
Driver						•	
Differential Driver Output (no load)	V _{OD1}	Figure 1				5	V
Differential Driver Output	V_{OD2}	Figure 1, $R = 27 \Omega$		1.5			V
Change in Magnitude of Differential Output Voltage (Note 2)	ΔV_{OD}	Figure 1, R =	: 27 Ω			0.2	V
Driver Common-mode Output Voltage	V _{oc}	Figure 1, R =	: 27 Ω			3	V
Change in Magnitude of Common-Mode	ΔV_{OC}	Figure 1, $R = 27 \Omega$				0.2	V
Input High Voltage	V _{IH1}	DE, DI, /RE	E	2.0			V
Input Low Voltage	V _{IL1}	DE, DI, /RE	Ē			0.8	V
DI Input Hysteresis	V_{HYS}				100		mV
		DE = GND, V _{CC} = GND or 5.25V	V _{IN} = 12 V			125	μА
Input Current (A and B)	I _{IN4}		V _{IN} = -7 V			-75	
Driver Short-Circuit Output Current	1	$-7V \le V_{OUT} \le V_{CC}$		-100			mA
Briver Short-Sircuit Gutput Gurrent	I _{OSD}	$0V \le V_{OUT} \le 12V$				100	
Receiver							
Receiver Differential Threshold Voltage	V_{TH}	-7V ≦ V _{CM} ≦	12V	-200	-125	-50	mV
Receive Input Hysteresis	$\triangle V_{TH}$				40		mV
Receiver Output High Voltage	V _{OH}	$I_O = -4 \text{ mA}, V_{ID} = -6 \text{ mA}$	-50 mV	V _{CC} -1.5			V
Receiver Output Low Voltage	V_{OL}	$I_0 = 4 \text{ mA}, V_{ID} = -2$	200 mV			0.4	V
Three-State Output Current at Receiver	I _{OZR}	$0.4V \leq V_0 \leq 2.4V$				±1	μΑ
Receive Input Resistance	R _{IN}	-7V ≦ V _{CM} ≦ 12V		96			kΩ
Receiver Output Short-Circuit Current	I _{OSR}	$0V \leq V_{RO} \leq V_{CC}$		±7		±95	mA
Supply Current							
	I _{cc}	No load;	DE = V _{CC}		150	600	μA
Supply Current		/RE = DI = GND or V _{CC}	DE = GND		185	600	μΑ
Supply Current in Shutdown Mode	I _{SHDN}	$DE = GND, /RE = V_{CC},$ $DI = V_{CC}$ or GND				10	μA

Note 1: All currents into the device are positive. All currents out of the device are negative. All voltages are referred to device ground unless otherwise noted.

Note 2: $\triangle Vop$ and $\triangle Voc$ are the changes in Vop and Voc, respectively, when the DI input changes state.


SWITCHING CHARACTERISTICS

(V_{CC}=+5V±5%, TA=-40°C \sim +85°C, Typical Values are V_{CC}=+5V and TA=25°C)

Parameter	Symbol	Conditions	MIN	TYP	MAX	UNITS
Driver Input to Output	T _{DPLH}	Figure 3 and 5, $R_{DIFF} = 54 \Omega$		450	800	
Driver Input to Output	T _{DPHL}	$C_{L1} = C_{L2} = 100 \text{ pF}$		450	800	ns
Driver Output Skew $ T_{DPLH} - T_{DPHL} $	T _{DSKEW}	Figure 3 and 5, $R_{DIFF} = 54 \Omega$ $C_{L1} = C_{L2} = 100 \text{ pF}$			100	ns
Driver Rise or Fall Time	T_{DR},T_{DF}	Figure 3 and 5, R_{DIFF} = 54 Ω C_{L1} = C_{L2} = 100 pF		150	500	ns
Maximum Data Rate	F _{MAX}		500			kbps
Driver Enable to Output High	T _{DZH}	Figure 4 and 6, $C_L = 100 \text{ pF}$, S2			200	ns
Driver Enable to Output	T _{DZL}	Figure 4 and 6, C _L = 100 pF, S1			200	ns
Driver Disable Time from Low	T_{DLZ}	Figure 4 and 6, C _L = 15 pF, S1			300	ns
Driver Disable Time from High	T_{DHZ}	Figure 4 and 6, $C_L = 15 pF$, S2			300	ns
Receiver Input to Output	T _{RPLH} T _{RPHL}	Figure 7 and 9, $ V_{ID} \ge 2.0V$, rise and fall time of $V_{ID} \le 1.5$ ns		450	800	ns
TRPLH - TRPHL Differential Receiver Skew	T _{RSKD}	Figure 7 and 9, V _{ID} ≥ 2.0V, rise and fall time ofV _{ID} ≤15ns		30		ns
Receiver Enable to Output Low	T _{RZL}	Figure 2 and 8, C _L = 100 pF, S1		20	50	ns
Receiver Enable to Output High	T _{RZH}	Figure 2 and 8, C _L = 100 pF, S2 Closed		20	50	ns
Receiver Disable Time from Low	T _{RLZ}	Figure 2 and 8, C _L = 100 pF, S1 Closed		80	150	ns
Receiver Disable Time from High	T _{RHZ}	Figure 2 and 8, C _L = 100 pF, S2 Closed		80	150	ns
Time to Shutdown	T _{SHDN}			50	300	ns
Driver Enable from Shutdown to Output High	T _{DZH(SHDN)}	Figure 4 and 6, C _L = 15 pF, S2 Closed			200	ns
Driver Enable from Shutdown to Output Low	T _{DZL(SHDN)}	Figure 4 and 6, C _L = 15 pF, S1 Closed			200	ns
Receiver Enable from Shutdown to Output High	T _{RZH(SHDN)}	Figure 2 and 8, C _L = 100 pF, S2 Closed			300	ns
Receiver Enable from Shutdown to Output Low	T _{RZL(SHDN)}	Figure 2 and 8, C _L = 100 pF, S1 Closed			300	ns

TEST CIRCUITS AND TIMING DIAGRAMS

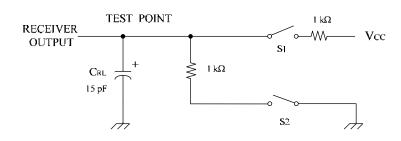


Figure 1: Driver DC Test Load

Figure 2: Receiver Enable/Disable Timing Test Load

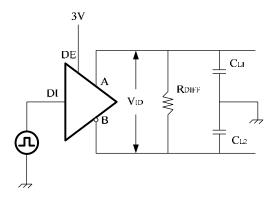


Figure 3: Driver Timing Test Circuit

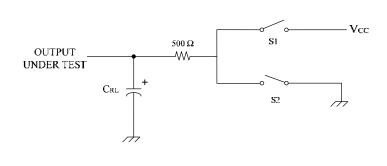
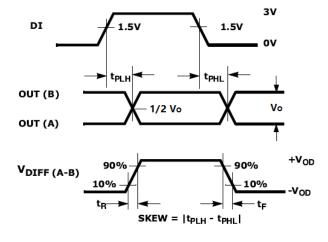



Figure 4: Driver Enable/Disable Timing test Load

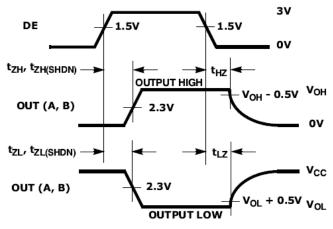


Figure 6: Driver Enable and Disable Times

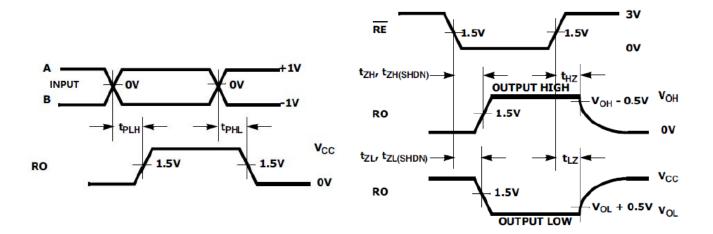
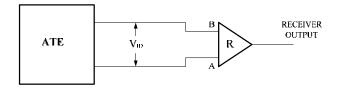
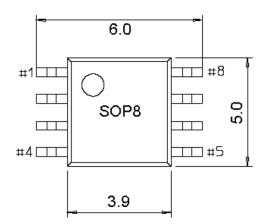
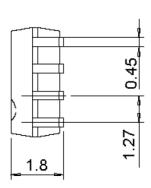
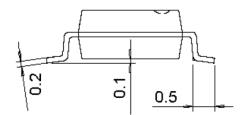


Figure 7: Receiver Propagation Delays

Figure 8: Receiver Enable and Disable Times


Figure 9: Receiver Propagation Delay Test Circuit


PACKAGE OUTLINE DIMENSIONS

SOP-8(SOIC-8)

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.

 HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.