Descriptions

The PI3USB4000DQ1ZUAEX is a bidirectional low-power dual port, high-speed, USB 2.0 analog switch with integrated protection for USB Type-C[™] systems. The device is configured as a dual 2:1 or 1:2 switch. It is optimized for use with the USB 2.0 DP/DM lines in a USB Type-C[™] system.

The PI3USB4000DQ1ZUAEX integrated over-voltage protection on the C0+/- pins can withstand up to DC 30V with automatic shutoff circuitry in order to protect system components behind the switch. GPIO controls of SEL and _EN are 1.8V logic compatible. The PI3USB4000DQ1ZUAEX is available in QFN1520(UQFN-10(1.5x2)) with Pb-free and Halogen-free making it a perfect candidate for mobile and space constrained applications.

Order Information

Package		Part Number	Top-Side Marking	
QFN1520(UQFN-10(1.5x2))	Tapeand Reel	PI3USB4000DQ1ZUAEX	A673/UGYW	

Features

- Pin-to-Pin FSUSB42UMX, NX3DV42GU, DIO5000, PI3USB4000, SGM7227YU
- Supply Range 2.5 V to 5.5 V
- Differential 2:1 or 1:2 Switch/Multiplexer
- Up to DC 30V Overvoltage Protection (OVP) on C0+/- Ports
- IEC 64000-4-5 Surge Protection w/o External TVS onto C0+/- Ports: ±30V
- System Side Clamp Voltage Pulse Less than 9V, Duration Less than 200nS
- Powered Off Protection When VDD = 0 V
- Low RON of 10 Ω Typical
- Insertion loss: -1dB@200MHz, -2dB@650MHz, -3dB@1GHz
- Con of 4.8 pF, 1.8-V Compatible Logic Inputs, Standard Temperature Range of 0°C to 85°C

Applications

- Anywhere a USB Type-C™ or Micro-B Connector is Used
- Mobile Phones, Tablets and Notebooks

Functions and Pin Configuration

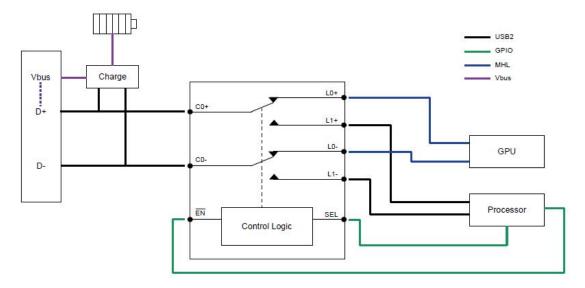


Fig.1 Functional Diagram

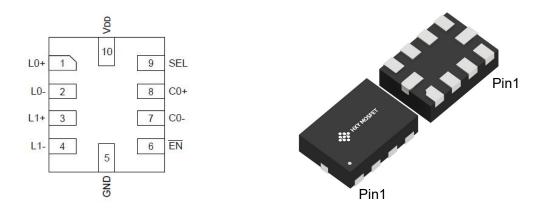


Fig.2 QFN1520(UQFN-10(1.5x2))

Pin Descriptions

2000p					
QFN1520 (UQFN-10(1.5x2))	QFN1418	Pin Name	Signal Type	Description	
8	1	C0+	I/O	Signal I/O, Common Port	
7	2	C0-	I/O	Signal I/O, Common Port	
3	7	L1+	I/O	Signal I/O, Channle 1	
4	6	L1-	I/O	Signal I/O, Channle 1	
1	5	L0+	I/O	Signal I/O, Channle 0	
2	4	LO-	I/O	Signal I/O, Channle 0	
9	10	SEL	I	Operation Model Select	
		SEL		(when SEL=0: C0→L0, when SEL=1: C0→L1)	
6	8	_EN	I	_EN=1, Power Down is Enabled.	
10	9	VDD	PWR	Positive Supply Voltage	
5	3	GND	GND	Power Ground	

Table-1 Pin Descriptions

Truth Table

Function	SEL	_EN
C0+/- to L0+/-	L	L
C0+/- to L1+/-	Н	L
All Switches Hi-Z	Х	L

Table-2 Truth Table

Electrical Characteristics (Ta=25°C, VDD=3.3V, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Power Supply	-					
Supply Voltage Range	VDD		2.5	3.3	5.5	V
	Icc	_EN =1 disconnection		5	13	uA
Supply Current		_EN =0 connection		33	60	uA
SEL/_EN Digital Input Cont	ol					
control input logic high	V _{IH}		1.6		5.5	V
control input logic low	V _{IL}		-0.1		0.5	V
Internal pull-down resistor	R _{PD}			2		МΩ
Switch On Resistance And C	off Leakag	e			'	ı
On-Resistance	Ron	V _{IS} = 0V~0.4V I _{OUT} =8mA		10	11	Ω
R _{ON} Flatness ⁽¹⁾	R _{FLAT}	V _{IS} = 0V~0.4V I _{OUT} =8mA		0.3	0.5	Ω
R _{ON} Matching Between	A.D.	\\ - 0\\ 0 4\\ 10 A		0.1	0.0	0
Channels ⁽²⁾	ΔR_{ON}	V _{IS} = 0V~0.4V I _{OUT} =8mA		0.1	0.2	Ω
OFF Leakage Current	I _{LEAK}	V _{C0+/-} = 10V V _{L1+/-} = V _{D2+/-} =0V		31	50	uA
Switch Dynamics					•	
On Capacitance	Con	V _{C0+/-} = 0.2V, f = 1MHz		4		pF
Off Capacitance	C _{OFF}	V _{C0+/-} = 0.2V, f = 1MHz		3		pF
Off Isolation	Off	$f = 250MHz, R_T = 50\Omega, C_L =$		-38		dB
Oli isolation		0pF		-30	_	uD
Crosstalk ⁽³⁾	X _{TALK}	$f = 250MHz, R_T = 50\Omega, C_L =$		-41		dB
(Channel-to-Channel)	N IALK	0pF		-41		
-3dB Bandwidth	BW	R_T =50 Ω , C_L =0pF Signal Power	1.0	1.1		GH
-5db bandwidth		0dBm				Z
Break-Before-Make	BBM	$V_{L1+/-} = V_{D2+/-} = 0.4V$, $R_L = 50\Omega$		1.5		uS
Turn-on Time	ton	$V_{C0+/-} = 0.4V, R_L=50\Omega$	20			uS
Turn-on Time	LON	_EN switches from High to Low		20		
Turn-off Time	t _{OFF}	$V_{C0+/-} = 0.4V, R_L=50\Omega$	1.2			uS
ram on rimo		_EN switches from Low to High				40
Propagation Delay	t _{PD}	$V_{C0+/-} = 0.4V, R_L=50\Omega$		200		pS
Over Voltage Protection	T				1	T
OVP Lockout Threshold	Vovp	V _{C0+/-} Rising Edge	4.6	4.9	5.2	V
OVP Hysteresis	V _{HYS}	V _{C0+/-} Falling Edge		200		mV
Clamp Voltage on L1+/- and	VCLAMP	10V shorts to C0+/-		6.5	8	V
D _{2+/-}	- OLAIVII	with R _L =1K Ω @ L1+/- and D _{2+/-}				
OVP Response Time	t _{FP}	10V shorts to C0+/-		200	300	nS
·		with R_L =1K Ω @ L1+/- and $D_{2+/-}$				
OVP Recovery Time	t _{FPR}	V _{C0+/-} jumps from 6V to 1V step	30	45	60	uS

Note:

Table-4 Electrical Characteristics

- (1) Flatness is defined as the difference between maximum and minimum value of ON-resistance at the specified analog signal voltage
- (2) Ron matching between channels is calculated by subtracting the channel with the lowest max Ron value from the channel with the highest max Ron value.
- (3) Crosstalk is inversely proportional to source impedance

Typical Performance Curves (Ta=25°C, VDD=3.0V, CAP=0.1uF, unless otherwise noted)

Fig.1 Switch Bandwidth or Insertion Loss

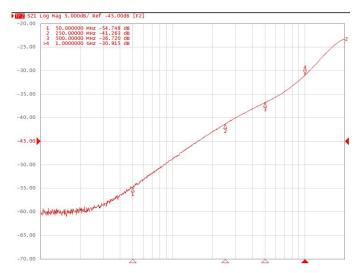
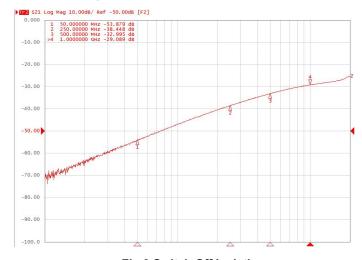
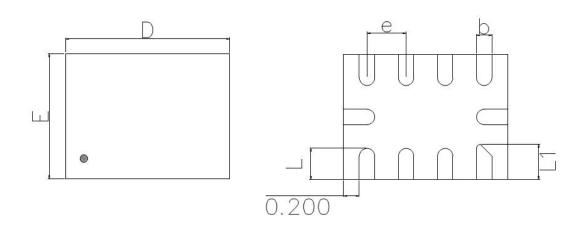
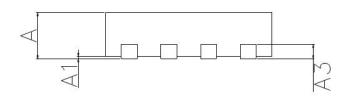


Fig.2 Switch Channel to Channel Cross-Talk


Fig.3 Switch Off Isolation

Package Outline Dimensions

QFN1520(UQFN-10(1.5x2))

Symbol	Dimension in Millimeters			
	Min.	Тур.	Max.	
A	0.500	0.550	0.600	
A1	0.000		0.050	
A3	0.150 Ref.			
D	1.950	2.000	2.050	
E	1.450	1.500	1.550	
b	0.150	0.200	0.250	
е	0.500 (BSC)			
L	0.300	0.350	0.400	
L1	0.350	0.400	0.450	

PI3USB4000DQ1ZUAEX Dual 2:1 USB 2.0 Mux/De-Mux

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc.

 When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.