

Descriptions

The NVT4557HKX device is built for interfacing a SIM card with a single low-voltage 1.0V to 1.8 V host side interface. The NVT4557HKX contains three 1.62 V to 3.6 V level translators to convert the data, RSTn and CLKn signals between a SIM card and a host microcontroller. The NVT4557HKX is compliant with all ETSI, IMT-2000 and ISO-7816 SIM/Smart card interface requirements.

Order Information

Package	Part Number	Top-Side Marking
QFN1418(XQFN-10(1.4x1.8))	Tape and Reel	NVT4557HKX

Features

- Supports clock speed up to 10 MHz clock
- Compliant with all ETSI, IMT-2000 and ISO-7816 SIM/Smart card interface requirements
- Support SIM card supply voltages with range of 1.62 V to 3.6 V
- Host microcontroller operating voltage range: 1.08 V to 1.98 V
- Automatic level translation of I/O, RSTn and CLKn between SIM card and host side interface with capacitance isolation
- Incorporates shutdown feature for the SIM card signals according to ISO-7816-3
- Automatic enable and disable through VCCB (Enable pin on A4557 Q 10 pin package only)
- Integrated pull-up and pull-down resistors: no external resistors required
- Integrated EMI filters suppress higher harmonics of digital I/Os
- Integrated 8 kV ESD protection according to IEC 61000-4-2, level 4 on VCCB or any of the card side pins. External ESD diodes are not required.
- Level shifting buffers keep ESD stress away from the host (zero-clamping concept)
- Pb-free, Restriction of Hazardous Substances (RoHS) compliant and free of halogen and antimony (Dark Green compliant)
- Available in 10-pin QFN10 package with 0.4mm pitch

Applications

- Mobile, Smart phones and Wireless modems
- SIM card terminals

Functions and Pin Configuration

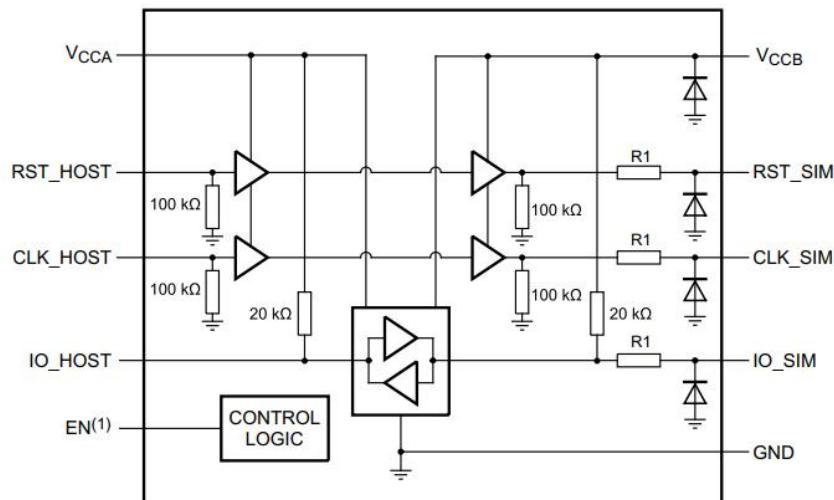


Fig.1 Functional Diagram

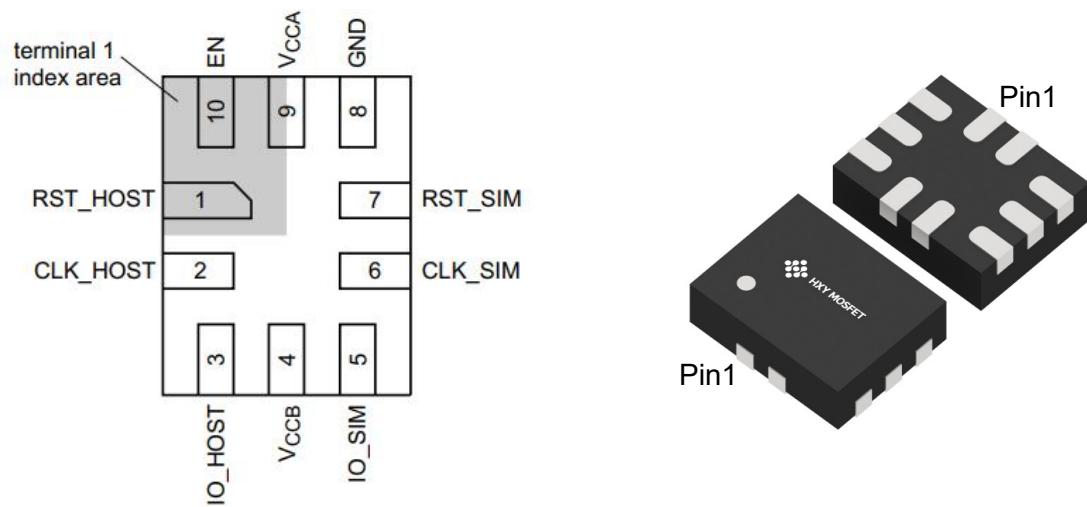


Fig.2 QFN1418(XQFN-10(1.4x1.8))

Pin Descriptions

Name	Pin for CSP	Pin for QFN	Type	Description
RST_HOST	A1	1	I	Reset input from host controller
VCCA	A2	9	Supply	Supply voltage for the host controller side input/output pins (CLK_HOST, RST_HOST, IO_HOST). This pin should be bypassed with a 0.1 μ F ceramic capacitor close to the pin.
RST_SIM	A3	7	O	Reset output pin for the SIM card
CLK_HOST	B1	2	I	Clock input from host controller
GND	B2	8	GND	Ground for the SIM card and host controller. Proper grounding and bypassing are required to meet ESD specifications
CLK_SIM	B3	6	O	Clock output pin for the SIM card
IO_HOST	C1	3	I/O	Host controller bidirectional data input/output. The host output must be on an open-drain driver
VCCB	C2	4	Supply	SIM card supply voltage. When VCCB is below the VCCBenable, the device is disabled. This pin should be bypassed with a 0.1 μ F ceramic capacitor close to the pin
IO_SIM	C3	5	I/O	SIM card bidirectional data input/output. The SIM card output must be on an open-drain driver
EN	---	10	I	Host controller driven enable pin. This pin should be HIGH (VCCA) for normal operation, and LOW to help avoid race conditions specifically during the shutdown sequence. (Only on 10 pin version - for 9 pin version EN is pulled to VCCA.)

Table-1 Pin Descriptions

Shutdown Sequence of NVT4557HKX (10-pin version only)

The ISO 7816-3 specification specifies the shutdown sequence for the SIM card signals to ensure that the card is properly disabled for power savings. Also during hot swap, the orderly shutdown of these signals helps to avoid any improper write and corruption of data. When the enable, EN, is asserted LOW, the shutdown sequence is initiated by powering down the RST_SIM channel. Once the RST_SIM channel is powered down, CLK_SIM and IO_SIM are powered down sequentially one-by-one. An internal pull-down resistor on the SIM pins is used to pull these channels LOW. The shutdown sequence is completed in a few microseconds. It is important that EN is pulled LOW before VCCA and VCCB supplies go LOW to ensure that the shutdown sequence is properly initiated.

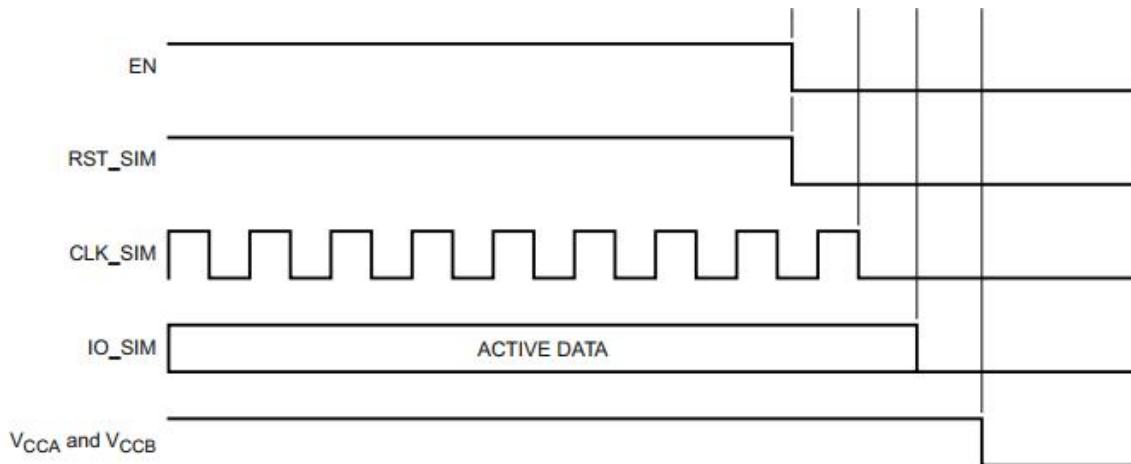
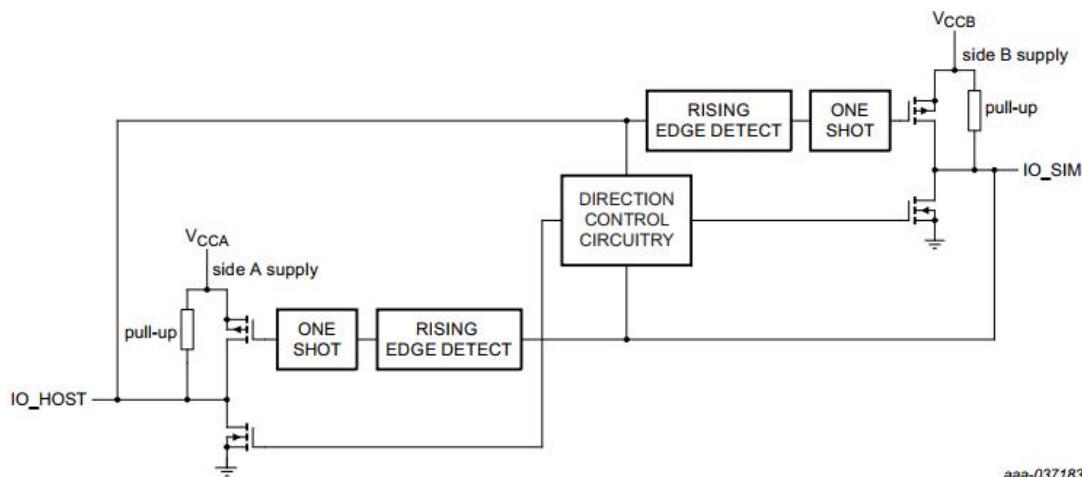



Fig.3 Shutdown sequence for RST_SIM, CLK_SIM, IO_SIM and VCCA/VCCB

Level Translator Stage

The architecture of the device I/O channel is shown below. The device does not require an extra input signal to control the direction of data flow from host to SIM or from SIM to host. As a change of driving direction is just possible when both sides are in HIGH state, the control logic is recognizing the first falling edge granting it control about the other signal side. During a rising edge signal, the non-driving output is driven by a one shot circuit to accelerate the rising edge. In case of a communication error or some other unforeseen incident that would drive both connected sides to be drivers at the same time, the internal logic automatically prevents stuck-at situation, so both I/Os will return to HIGH level once released from being driven LOW. The channels RST and CLK just contain single direction drivers without the holding mechanism of the I/O channel, as these are just driven from the host to the card side.

aaa-037183

Fig.4 Automatic direction control level translator for HIGH-level direction change interfaces

Electrical Characteristics (Ta=25°C, V_{VCCA}=1.0V~1.8V, V_{VCCB}=1.62V~3.6V, unless otherwise specified)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Power Supplies						
VCCA	Host Side Supply		1.0		1.98	V
VCCB	SIM Side Supply		1.6		3.6	V
V _{VCCA_U_VLO}	VCCA Under Voltage Lockout	Rising, 100mV hysteresis	0.6	0.7	0.8	V
V _{VCCB_U_VLO}	VCCB Under Voltage Lockout	Rising. 100mV hysteresis	1.3	1.4	1.5	V
I _{SD_VCCA}	Shutdown Current EN=0V	VCCA=1.2V		0.5	1	uA
I _{SD_VCCB}		VCCB=1.8V		0.5	1	uA
I _{Q_VCCA}	Quiescent Current EN=VCCA	VCCA=1.2V, CLK_HOST=0V		0.5	1	uA
I _{Q_VCCB}		VCCB=1.8V, CLK_HOST=0V		0.5	1	uA
I _{ACT_VCC_A}	Active Current EN=VCCA	VCCA=1.2V, CLK_HOST=1MHz CL= 30pF		5	10	uA
I _{ACT_VCC_B}		VCCB=1.8V, CLK_HOST=1MHz CL= 30pF		250	300	uA
Logic I/O pin (EN)						
V _{IH}	High-Level Input Voltage	EN pin	0.7*VCCA			V
V _{IL}	Low-Level Input Voltage	EN pin			0.3*VCC_A	V
Level Translator (Host Side)						
V _{IH}	High Level input voltage	IO_HOST, RST_HOST, CLK_HOST	0.7*VCCA			V
V _{IL}	Low Level input Voltage	IO_HOST, RST_HOST, CLK_HOST			0.3*VCC_A	V
V _{OH}	High Level output voltage	IO_HOST, IOH_IO=20uA	0.8*VCCA			V
V _{OL}	Low Level output voltage	IO_HOST, IOL_IO=20uA			0.2*VCC_A	V
R _{PUA}	Pull up resistance	IO_HOST connected to VCCA	6	8	10	kΩ
Level Translator (SIM Card Side)						
V _{IH}	High Level input voltage	IO_SIM	0.7*VCCB			V
V _{IL}	Low Level input Voltage	IO_SIM			0.3*VCC_B	V
V _{OH}	High Level output voitage	CLK_SIM, RST_SIM, IOH=20uA	0.8*VCCB			V
		IO_SIM, IOH=20uA	0.8*VCCB			V
V _{OL}	Low Level output voltage	CLK_SIM, RST_SIM, IOL =-1mA			0.125*VCCB	V
		IO_SIM, IOL =-1mA			0.125*VCCB	V

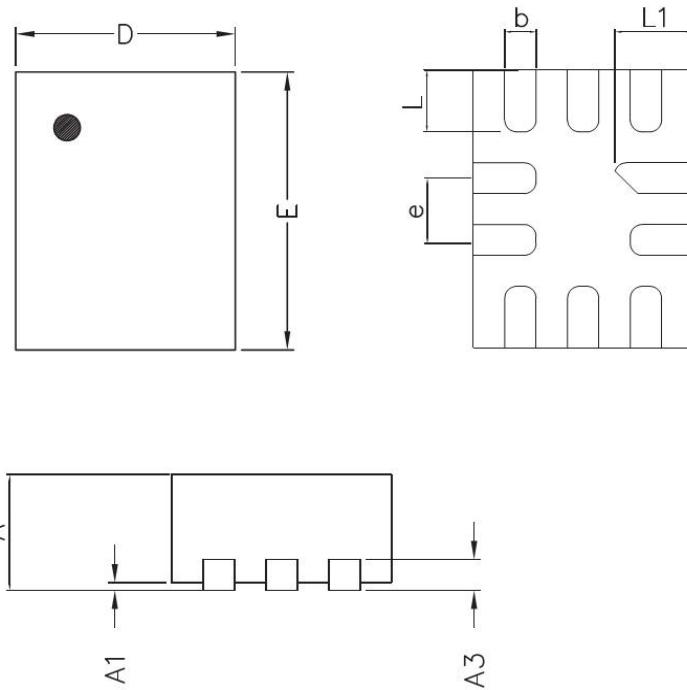

R_{PUB}	Pull up resistance	IO_SIM connected to VCCB	12	20	30	$k\Omega$
R_s	Series resistance	IO_SIM, RST_SIM, CLK_SIM	40	55	100	Ω
R_{PD}	Pull down resistance	IO_SIM, RST_SIM, CLK_SIM when EN is driven low		4		$k\Omega$
Dynamic Characteristics (CL=30pE in Host side, CL=30Pf in SIM side, VCCA=1.8V, VCCB=3.0V)						
t_{PD}	Propagation delay	From Host side to SIM side		10	20	ns
t_{PD}	Propagation delay	From SIM side to HOST side		10	20	ns
t_{r_B}	RST_SIM Rising time	From 10% to 90% of VCCB=3.0V		8	15	ns
	CLK_SIM Rising time	From 10% to 90% of VCCB=3.0V		8	15	ns
	IO_SIM Rising time	From 10% to 90% of VCCB=3.0V		8	15	ns
t_{r_B}	RST SIM falling time	From 90 %to 10% of VCCB=3.0V		8	15	ns
	CLK_SIM falling time	From 90 %to 10% of VCCB=3.0V		8	15	ns
	IO_SIM falling time	From 90 %to 10% of VCCB=3.0V		8	15	ns
t_{r_A}	IO_HOST rising time	From 10% to 90% of VCCA=1.8V		8	15	ns
t_{r_A}	IO_HOST falling time	From 90 %to 10% of VCCA=1.8V		8	15	ns
t_{EN}	Enable timing	From EN High to RST_High			100	ns
t_{RST_DIS}	RST_SIM Disable time	From EN Low to RST_SIM low		200		ns
t_{CLK_DIS}	CLK_SIM Disable time	From EN low to CLK_SIM low		15		us
t_{IO_DIS}	IO_SIM Disable time	From EN low to IO_SIM low				us
f_{CLK}	CLK_HOST frequency				10	MHZ

Table-2 Electrical Characteristics

Package Outline Dimensions

QFN1418(XQFN-10(1.4x1.8))

Symbol	Dimension in Millimeters	
	Min.	Max.
A	0.450	0.550
A1	0.000	0.050
A3	0.152 Ref.	
D	1.350	1.450
E	1.750	1.850
b	0.150	0.250
e	0.400 Typ.	
L	0.350	0.450
L1	0.450	0.550

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.