

Descriptions

FSA646UCX is a high performance four-data lane MIPI, D-PHY switch. This single-pole, double-throw(SPDT) switch is optimized for switching between two high-speed or low-power MIPI sources. The FSA646UCX has wide bandwidth and maintains good signal integrity, which makes it ideal is designed for the MIPI specification and allows connection to a CSI or DSI module. 36-Ball Wafer Level Chip Scale Package (WLCSP) 2.4mm x 2.4mm with Pb-free and Halogen-free, makes it ideal for mobile device.

Order Information

Package		Part Number	Top-Side Marking
CSP-36(WLCSP-36(2.4x2.4))	Tape and Reel	FSA646UCX	TBD

Features

• Pin-to-Pin FSA646, CSP-36(WLCSP-36(2.4x2.4))

Wide VCC Supply Range: 1.65v~5.5vLow Quiescent Current: 35uA Typical

• Insertion loss: -1dB@1GHz, -2dB@1.5GHz, -3dB@5.1GHz

Channel-to-Channel Cross-talk: -30dB Typical

Power-off Truly Isolated and Off-Isolation: -25dB Typical

Applications

• Laptop, Multi-Camera and Displays, 4G/5G Smart Phone, Mobile and Al Device

Functional Diagram

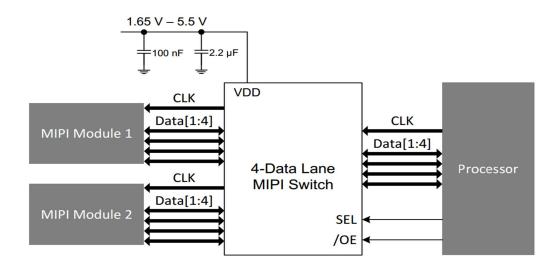


Fig.1 Functional Diagram

Pin Configuration

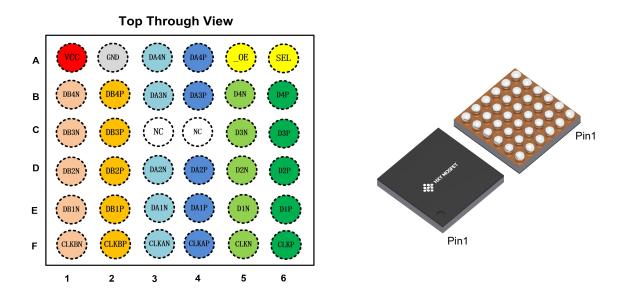


Fig.2 Top-Through View and Top-Side View

Pin Descriptions

	Pin Descriptions					
Pin #	Name	Type	Description			
A1	VCC	PWR	1.5~5V Positive Supply			
A2	GND	GND	Primary Ground Connection. Must be Connected to System Ground			
А3	DA4N	I/O	A Side Data Path 4 Negative			
A4	DA4P	I/O	A Side Data Path 4 Positive			
A5	_OE	I	Chip Enable, Low Active			
A6	SEL	I	Channel Selection. When Low, A side selected; When High, B side selected			
B1	DB4N	I/O	B Side Data Path 4 Negative			
B2	DB4P	I/O	B Side Data Path 4 Positive			
В3	DA3N	I/O	A Side Data Path 3 Negative			
B4	DA3P	I/O	A Side Data Path 3 Positive			
B5	D4N	I/O	Common Side Data Path 4 Negative			
B6	D4P	I/O	Common Side Data Path 4 Positive			
C1	DB3N	I/O	B Side Data Path 3 Negative			
C2	DB3P	I/O	B Side Data Path 3 Positive			
C3	NC	0	Not Connected			
C4	NC	0	Not Connected			
C5	D3N	I/O	Common Side Data Path 3 Negative			
C6	D3P	I/O	Common Side Data Path 3 Positive			
D1	DB2N	I/O	B Side Data Path 2 Negative			
D2	DB2P	I/O	B Side Data Path 2 Positive			
D3	DA2N	I/O	A Side Data Path 2 Negative			
D4	DA2P	I/O	A Side Data Path 2 Positive			
D5	D2N	I/O	Common Side Data Path 2 Negative			
D6	D2P	I/O	Common Side Data Path 2 Positive			
E1	DB1N	I/O	B Side Data Path 1 Negative			
E2	DB1P	I/O	B Side Data Path 1 Positive			
E3	DA1N	I/O	A Side Data Path 1 Negative			
E4	DA1P	I/O	A Side Data Path 1 Positive			
E5	D1N	I/O	Common Side Data Path 1 Negative			
E6	D1P	I/O	Common Side Data Path 1 Positive			
F1	CLKBN	I/O	B Side Clock Path Negative			
F2	CLKBP	I/O	B Side Clock Path Positive			
F3	CLKAN	I/O	A Side Clock Path Negative			
F4	CLKAP	I/O	A Side Clock Path Positive			
F5	CLKN	I/O	Common Side Clock Path Negative			
F6	CLKP	I/O	Common Side Clock Path Positive			
			·			

Table-1 Pin Descriptions

Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1)

		Range	Unit
Power Supply Voltage	VCC	-0.5 ~ 6.0	V
Control Pins	_OE, SEL	-0.5 ~ VCC	V
DC Switch I/O Voltage	V _{SW}	-0.3 ~ VCC	V
DC I/O Current	l _{ικ}	-50 ~ 50	mA
Storage Temperature	T _{STG}	-55 ~ 150	°C
Range	ISTG	-55 ~ 150	30
ESD HBM,	VCC	±2	kV
ANSI/ESDA/JEDEC	_OE, SEL	±2	kV
JS-001-2012	Other I/O Pins	±2	kV
	VCC	±200	V
ESD MM, JESD22-A115	_OE, SEL	±2	kV
	Other I/O Pins	±2	kV

Table-2 Absolute Maximum Ratings

Recommend Operating Conditions

		Range	Unit
Power Supply Voltage	VCC	1.65 ~ 5.5	V
Control Pins	_OE, SEL	0 ~ VCC	V
Cianal Dina	HS Mode	0 ~ 0.3	V
Signal Pins	LP Mode	0 ~ 1.3	V
Operating Temperature	T _A	-40 ~ 85	°C

Table-3 Recommend Operating Conditions

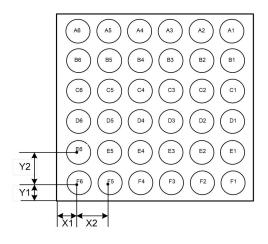
(1) If _OE is left undriven, it will be pulled up to VCC by internal resistor; If SEL is left undriven, it will be pulled down to Ground by internal resistor.

⁽¹⁾ Stresses beyond those listed in Table-2 *Absolute Maximum Ratings* may cause permanent damage to the device. They are stress ratings only, which do not imply functional operation of the device at these or any other conditions. Beyond those indicated under *Recommended Operating Conditions*, exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

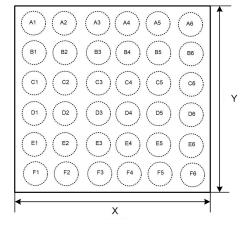
Electrical Characteristics (Ta=25°C, VCC=1.8V, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power Supply						
VCC Quiescent Current	ΙQ	SEL=0 or VCC, _OE=0		30		uA
Power-down Current	I _{PD}	SEL=0 or VCC, _OE=VCC			1	uA
DC Characteristics					•	
Input logic high	V _{IH}	VCC=1.8~4.5V	1.6			V
Input logic low	V _{IL}	VCC=1.8~4.5V			0.4	V
_OE Internal pull-up resistor	R _{UP}			2		МΩ
SEL Internal pull-down resistor	R _{DN}			2		МΩ
On-Resistance for LP MIPI	R _{ON_LP}	V _{IS} = 1.2V I _{ON} =8mA		4.8	10	Ω
On-Resistance for HS MIPI	R _{ON_HS}	V _{IS} = 0.2V I _{ON} =8mA		4.3	9	Ω
R _{ON} Flatness for LP MIPI	R _{FLAT_LP}	V _{IS} = 0 to 1.2V I _{ON} =8mA		0.9		Ω
R _{ON} Flatness for HS MIPI	R _{FLAT_LP}	V _{IS} = 0 to 0.2V I _{ON} =8mA		0.2		Ω
R _{ON} Matching Between Channels	RMATCH	V _{IS} = 0 to 1.2V I _{ON} =8mA		0.1		Ω
Switch Off Leakage Current	I _{OFF}	_OE=VCC Dn, Dp =VCC DAn, DBn, DAp, DBp=0 CLKn, CLKp=0 CLKAn, CLKBn, CLKAp, CLKBp=VCC	-0.5		0.5	uA
AC Characteristics						
Enable Time _OE to Output	t _{EN}	R _L =50Ω C _L =0pF V _{IS} = 0.6V		80	150	uS
Disable Time _OE to Output	t _{DIS}	R _L =50Ω C _L =0pF V _{IS} = 0.6V		40	250	nS
Turn-On Time SEL to Output	t _{ON}	R _L =50Ω C _L =0pF V _{IS} = 0.6V		400	1200	nS
Turn-Off Time SEL to Output	t _{OFF}	R _L =50Ω C _L =0pF V _{IS} = 0.6V		130	800	nS
Break-Before-Make Time	t _{BBM}	R _L =50Ω C _L =0pF V _{IS} = 0.6V		250	500	nS
Propagation Delay	t _{PD}	R _L =50Ω C _L =0pF V _{IS} = 0.6V		0.25		nS
HS Mode Skew of Opposite Transitions of the Same Output	t _{SK(P)}	R _L =50Ω C _L =0pF V _{IS} = 0.3V		6		pS
HS Mode Skew of Channel-to-Channel Single-Ended Skew	t _{SK(O)}	R_L =50 Ω C_L =0pF V_{IS} = 0.3 V		6		pS
Off Isolation	Off	$R_L = 50\Omega$ f = 1.2GHz V_{IS} = 0.2 V_{PP}		-25		dB
Crosstalk (Channel-to-Channel)	XTALK	$R_L = 50\Omega$ f = 1.2GHz V_{IS} = 0.2 V_{PP}		-30		dB
-3dB Bandwidth (Insertion Loss)	BW _{-3dB}	R _L =50Ω C _L =0pF Signal 0dBm		5.1		GHz

Capacitance				
Switch On Capacitance	Con	V _{Bias} = 0.2V, f = 1250MHz	1.5	pF
Switch Off Capacitance	C _{OFF}	V _{Bias} = 0.2V, f = 1250MHz	1.0	pF


Table-4 Electrical Characteristics

Note:


- (1) Flatness is defined as the difference between maximum and minimum value of ON-resistance at the specified analog signal voltage points.
- (2) Crosstalk is inversely proportional to source impedance

Package Outline Dimensions

CSP-36(WLCSP-36(2.4x2.4))

Bottom-Up View

Top-Through View

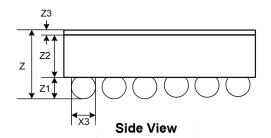
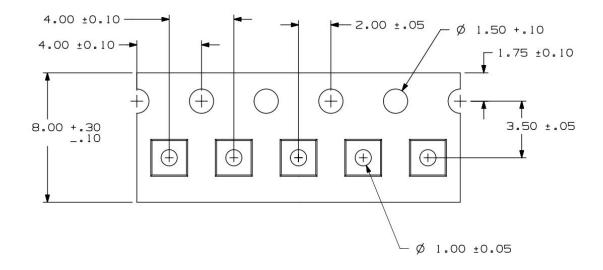



Fig.3 Package Outline Dimensions

Symbol	Dimensions In Millimeter				
	Min.	Тур.	Max.		
X	2.37	2.40	2.43		
Υ	2.37	2.40	2.43		
X1		0.16			
X2		0.40			
Х3	0.175	0.205	0.235		
Y1		0.16			
Y2		0.40			
Z	0.550	0.600	0.650		
Z1	0.145 0.170		0.195		
Z2	0.340	0.365	0.390		
Z3	0.395	0.040	0.045		

Table-5 Package Outline Dimensions

Tape and Reel Information

Quadrant Assignments for PIN 1 Orientation In Tape

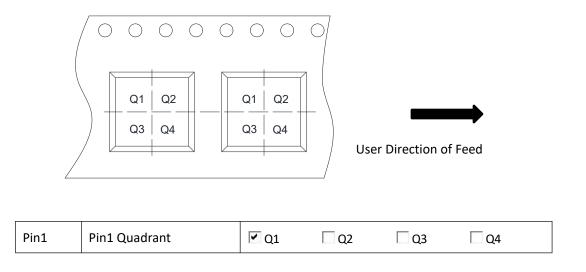


Fig.4 Tape and Reel Information

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.