General description

HINN700TK240B is a 725V GaN-on-Si enhancement-mode power transistor in TO-252-2L package. The properties of GaN allow for high current, high breakdown voltage and high switching frequency. The TO-252-2L package offers low parasitic inductance, strong heat dissipation capability and high solderability, which make GaN better apply to consumer and industrial applications.

TO-252-2L

Drain Pin 3

Features

- 725V GaN enhancement-mode power switch
- $R_{DS(on), max} 200 m\Omega$
- Gate recommend drive voltage 0V 6V
- Ultra-low FOM
- · Ultra-high switching frequency
- · Reverse current capability
- · Zero reverse recovery loss Monolithic
- integrated ESD protection
- · RoHS, Pb-free, REACH-compliant

Pin 1 O Source Pin 2,tab

Gate	1
Source	2, tab
Drain	3

Applications

- · AC-DC converters
- DC-DC converters
- Totem pole PFC
- Fast charging
- Power adapters
- LED lighting drivers
- Wireless power transfer
- · Laser drivers
- · TV display

Maximum ratings

at T_j = 25 °C unless otherwise specified. Continuous application of maximum ratings can deteriorate transistor lifetime. For further information, contact CloudSemi sales office.

Table 3 Maximum rating

Downwatows	Cumhala		Values		Unito	Notes/Test Conditions	
Parameters	Symbols	Min.	Тур.	Max.	Units	NOTES TEST CONTRIBUTES	
Drain-source voltage	V _{DS, max}	ı	-	725	V	V _{GS} = 0 V, I _D = 10 μA	
Drain-source voltage transient ¹	V _{DS, transient}	-	-	850	V	V _{GS} = 0 V, V _{DS} = 850 V	
Continuous current, drain-source	I _D	-	-	10	А	T _c = 25 °C	
Pulsed current, drain-source ²	I _{D, pulse}	-	-	18	Α	T _c = 25 °C; V _G = 6 V	
Pulsed current, drain-source ²	I _{D, pulse}	1	-	10	А	T _c = 125 °C; V _G = 6 V	
Gate-source voltage, continuous	V _{GS}	-1.4	-	+7	V	T _j = -55 °C to 150 °C	
Gate-source voltage, pulsed	VGS, pulse	1	-	+10	V	T_j = -55 °C to 150 °C; t_{Pulse} = 50 ns, f = 100 kHz; open drain	
Power dissipation	P _{tot}	-	-	73	W	T _c = 25 °C	
Operating temperature	Tj	-55	-	+150	°C		
Storage temperature	T _{stg}	-55	-	+150	°C		

^{1.} $V_{DS,\,transient}$ is intended for surge rating during non-repetitive events, t_{Pulse} < 1 μs .

Thermal characteristics

Table 4 Thermal characteristics

Parameters	Symbols		Values		Units	Notes/Test Conditions	
raidilleters	Syllibols	Min.	Тур.	Max.	Ullits	Notes/Test Conditions	
Thermal resistance, junction-case	R _{thJC}	ı	-	1.7	°C/W		
Reflow soldering temperature	T _{sold}	-	-	260	°C	MSL3	

^{2.} Pulse width = 10 μs.

Electrical characteristics

at T_j = 25 °C, unless specified otherwise.

Table 5 Static characteristics

Damana dama	Complete la	Values			11 !4	Notes/Test Conditions
Parameters	Symbols Min. Typ. Ma		Max.	Units		
Cata threshold voltage	\/	1.2	1.6	2.5	V	I _D = 11 mA; V _{DS} = V _{GS} ; T _j = 25 °C
Gate threshold voltage	V _{GS(TH)}	-	1.6	-	\ \	$I_D = 11 \text{ mA}; V_{DS} = V_{GS}; T_j = 125 \text{ °C}$
Drain-source leakage current	IDSS	-	4	50	μΑ	V _{DS} = 725 V; V _{GS} = 0 V; T _j = 25 °C
		-	10	-		V _{DS} = 725 V; V _{GS} = 0 V; T _j = 125 °C
Gate-source leakage current	Igss	-	-	200	μA	V _{GS} = 6 V; V _{DS} = 0 V
Drain-source on-state	В	-	160	200	mΩ	V _{GS} = 6 V; I _D = 3 A; T _j = 25 °C
resistance	R _{DS(on)}	-	330	-	mΩ	V _{GS} = 6 V; I _D = 3 A; T _j = 125 °C
Gate resistance	R _G	-	3.5	-	Ω	f = 5 MHz; open drain

Table 6 Dynamic characteristics

Downwaters	Cumhala	Values			11-14-	Nata (Tast Canalitians
Parameters	Symbols	Min.	Тур.	Max.	Units	Notes/Test Conditions
Input capacitance	Ciss	-	83	-	pF	V _{GS} = 0 V; V _{DS} = 400 V; f = 1 MHz
Output capacitance	Coss	-	27	-	pF	V _{GS} = 0 V; V _{DS} = 400 V; f = 1 MHz
Reverse transfer capacitance	Crss	-	0.4	-	pF	V _{GS} = 0 V; V _{DS} = 400 V; f = 1 MHz
Effective output capacitance, energy related ¹	C _{o(er)}	-	35	-	pF	V _{GS} = 0 V; V _{DS} = 0 to 400 V
Effective output capacitance, time related ²	C _{o(tr)}	-	54	-	pF	V _{GS} = 0 V; V _{DS} = 0 to 400 V
Output charge	Qoss	-	22	-	nC	V _{GS} = 0 V; V _{DS} = 0 to 400 V
Turn-on delay time	t _{d(on)}	-	2	-	ns	
Turn-off delay time	t _{d(off)}	-	4	-	ns	V _{DS} = 400 V; I _D = 6 A; L = 318 μH;
Rise time	tr	-	5	-	ns	$V_{GS} = 6 \text{ V}; R_{on} = 10 \Omega; R_{off} = 2 \Omega$
Fall time	t _f	-	6	-	ns	

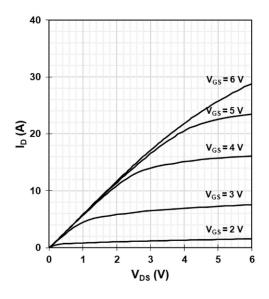
^{1.} $C_{\text{o(er)}}$ is the fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 400 V.

^{2.} $C_{\text{o(tr)}}$ is the fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 400 V.

Table 7 Gate charge characteristics

Parameters	Values			Units	Notes/Test Conditions	
rarameters	Symbols	Min.	Тур.	Max.	Ullits	Notes/Test Conditions
Gate charge	Q _G	-	2.3	-	nC	\\\ = 0 to 6 \\\\\\\ = 400 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Gate-source charge	Q _{GS}	-	0.2	-	nC	$V_{GS} = 0 \text{ to } 6 \text{ V}; V_{DS} = 400 \text{ V};$ $I_{D} = 3 \text{ A}$
Gate-drain charge	Q _{GD}	-	0.9	-	nC	ID = 3 A
Gate plateau voltage	V _{plat}	-	2.4	-	V	V _{DS} = 400 V; I _D = 3 A

Table 8 Reverse conduction characteristics


D	0	Values				
Parameters	Symbols	Min.	Тур.	Max.	Units	Notes/Test Conditions
Source-drain reverse voltage	V _{SD}	-	2.5	-	V	V _{GS} = 0 V; I _{SD} = 3 A
Pulsed current, reverse	Is, pulse	-	20	-	Α	V _{GS} = 6 V
Reverse recovery charge ¹	Qrr	-	0	-	nC	I _{SD} = 3 A; V _{DS} = 400 V
Reverse recovery time	t _{rr}	-	0	-	ns	
Peak reverse recovery						
current	Irrm	-	0	-	A	

^{1.} Excluding Qoss

Electrical characteristics diagrams

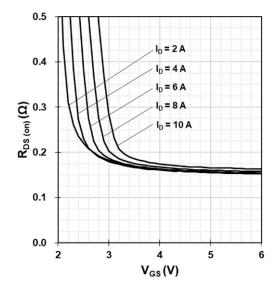

at T_j = 25 °C, unless specified otherwise.

Figure 1 Typ. output characteristics

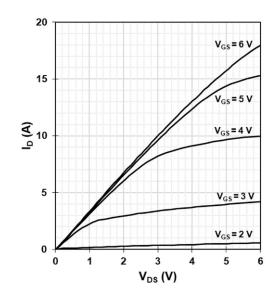

 $I_D = f(V_{DS}, V_{GS}); T_j = 25 \, ^{\circ}C$

Figure 3 Typ. drain-source on-state resistance

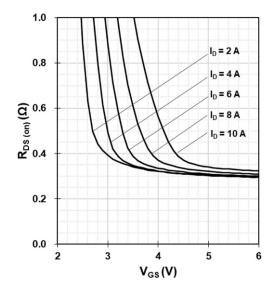

 $R_{DS(on)} = f(I_D, V_{GS}); T_j = 25 \text{ }^{\circ}\text{C}$

Figure 2 Typ. output characteristics

 $I_D = f(V_{DS}, V_{GS}); T_j = 125 \, ^{\circ}C$

Figure 4 Typ. drain-source on-state resistance

 $R_{DS(on)} = f(I_D, V_{GS}); T_j = 125 \text{ }^{\circ}\text{C}$

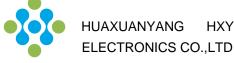
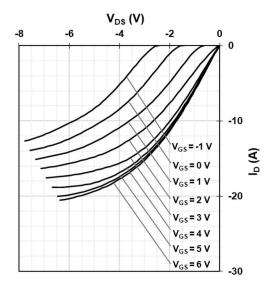
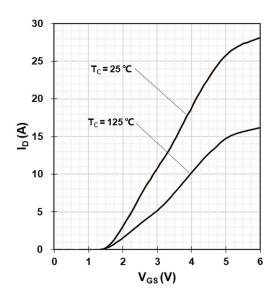




Figure 5 Typ. channel reverse characteristics

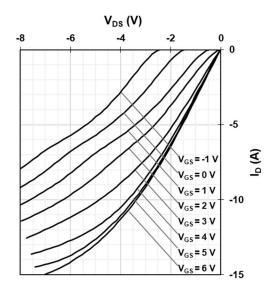

$$I_D = f(V_{DS}, V_{GS}); T_j = 25 \, ^{\circ}C$$

Figure 7 Typ. transfer characteristics

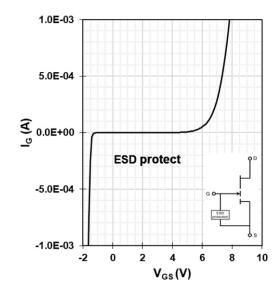

$$I_D = f(V_{GS}); V_{DS} = 5 V$$

Figure 6 Typ. channel reverse characteristics

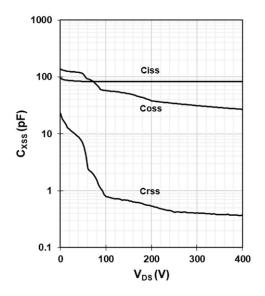

$$I_D = f(V_{DS}, V_{GS}); T_j = 125 \,^{\circ}C$$

Figure 8 Typ. gate-to-source leakage

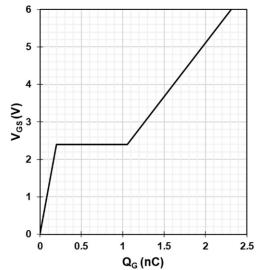

$$I_G = f(V_{GS}); V_D = open$$

Figure 9 Typ. capacitances

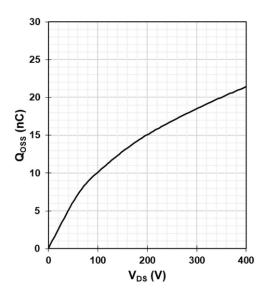

 $C_{XSS} = f(V_{DS})$; Freq. = 1 MHz

Figure 10 Typ. gate charge

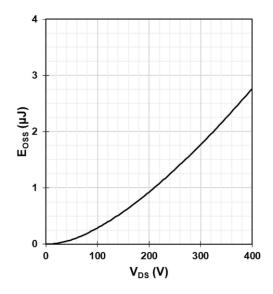

 $V_{GS} = f(Q_G); V_{DS} = 400 \text{ V}; I_D = 3 \text{ A}$

Figure 11 Typ. output charge

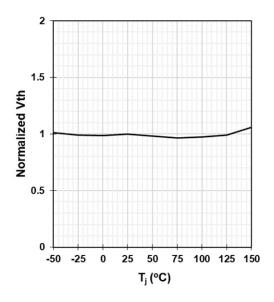

 $Q_{OSS} = f(V_{DS})$; Freq. = 1 MHz

Figure 12 Typ. Coss stored energy

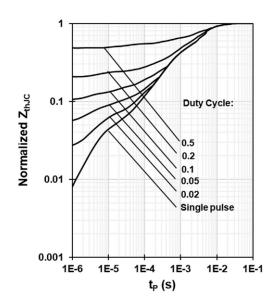

 $E_{OSS} = f(V_{DS})$; Freq. = 1 MHz

Figure 13 Gate threshold voltage

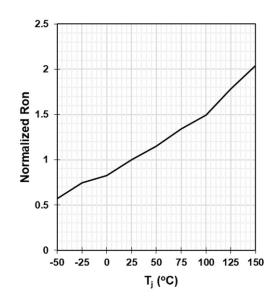

 $V_{GS(TH)} = f(T_j); V_{GS} = V_{DS}; I_D = 11 \text{ mA}$

Figure 15 Max. transient thermal impedance

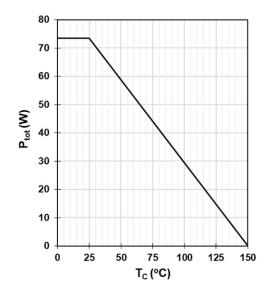

$$Z_{thJC} = f(t_P, D)$$

Figure 14 Drain-source on-state resistance

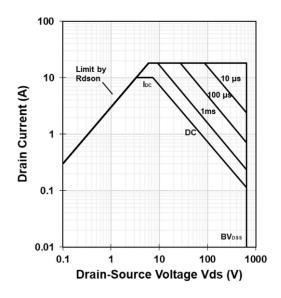
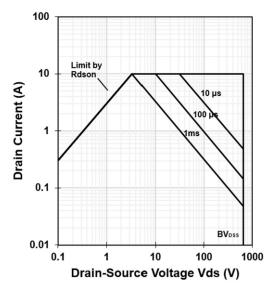

$$R_{DS(on)} = f(T_j); I_D = 3 A; V_{GS} = 6 V$$

Figure 16 Power dissipation


$$P_{tot} = f(T_C)$$

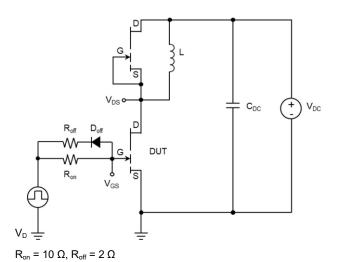

$$I_D = f(V_{DS}); T_C = 25 \,^{\circ}C$$

Figure 18 Safe operating area

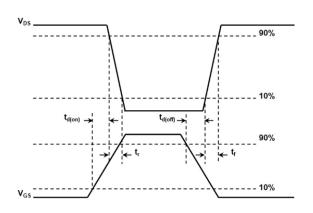
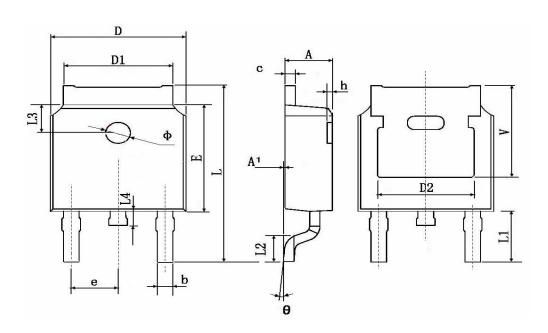
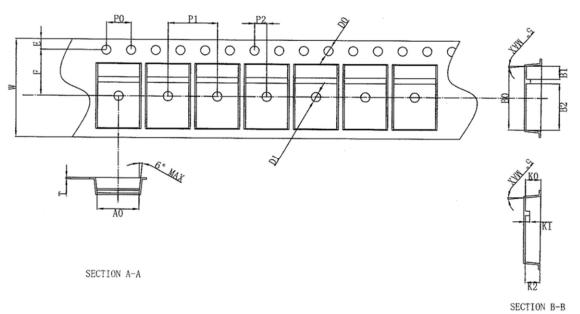

$$I_D = f(V_{DS}); T_C = 125 \,^{\circ}C$$

Figure 19 Switching time test circuit

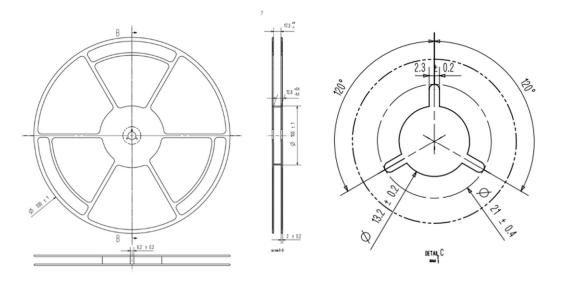


 $V_{DS} = 400 \text{ V}, \ I_D = 6 \text{ A}, \ L = 318 \ \mu\text{H}, \ V_{GS} = 6 \text{ V},$ $R_{on} = 10 \ \Omega, \ R_{off} = 2 \ \Omega$

Figure 20 Typ. switching time waveforms



Package outlines TO-252-2L



	Dimensions	In Millimeters	Dimension	s In Inches	
Symbol	Min.	Max.	Min.	Max.	
Α	2.200	2.400	0.087	0.094	
A1	0.000	0.127	0.000	0.005	
b	0.660	0.860	0.026	0.034	
С	0.460	0.580	0.018	0.023	
D	6.500	6.700	0.256	0.264	
D1	5.100	5.460	0.201	0.215	
D2	4.830	TYP.	0.190	TYP.	
E	6.000	6.200	0.236	0.244	
е	2.186	2.386	0.086	0.094	
L	9.800	10.400	0.386	0.409	
L1	2.900	TYP.	0.114 TYP.		
L2	1.400	1.700	0.055	0.067	
L3) TYP.		3 TYP.	
L4	0.600	1.000	0.024	0.039	
Ф	1.100	1.300	0.043	0.051	
θ	0°	8°	0°	8°	
h	0.000	0.300	0.000	0.012	
V	5.350	TYP.	0.211	TYP.	

Reel information

SYMBOL	DIMENSION	SYMBOL	DIMENSION	
W	16.00±0.30	10P0	40.00±0.20	
E	1.75±0.10	P1	8.00±0.10	
F	7.50±0.05	A0	6.80±0.10	
D0	1.625±0.125	В0	10.40±0.10	
D1	1.55±0.05	K0	2.5±0.10	
P0	4.00±0.10	Т	0.25±0.05	
P2	2.00±0.10	K1	0.70±0.05	
B1	2.10±0.05	K2	2.40±0.10	
B2	7.55±0.05			

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.

 HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc.

 When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.