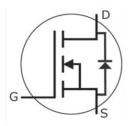


Features

- 3rd generation SiC MOSFET technology
- Optimized package with separate driver source pin
- High blocking voltage with low on-resistance
- High-speed switching with low capacitances
- Fast intrinsic diode with low reverse recovery (Q,,)
- Halogen free, RoHS compliant

Benefits

- · Reduce switching losses and minimize gate ringing
- Higher system efficiency
- Reduce cooling requirements
- Increase power density
- Increase system switching frequency


Applications

- Renewable energy
- EV battery chargers
- High voltage DC/DC converters
- Switch Mode Power Supplies

Maximum Ratings (T_c = 25 $^{\circ}$ C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
V_{DSmax}	Drain-Source Voltage	1700	V	$V_{GS} = 0 \text{ V}, I_{D} = 100 \text{ A}$	
V_{GSmax}	Gate-Source Voltage	-10/+25	V	Absolute maximum values	
V_{GSop}	Gate-Source Voltage	-5/+20	V	V Recommend operationaled values	
	Continuous Drain Current	7.0	А	V _{GS} =20V, T _c =25°C	Fig. 19
I _D		4.5		V _{GS} =20V, T _c =100°C	
I _{D(pulse)}	Pulsed Drain Current	9.0	Α	Pulse width t_p limited by T_{Jmax}	Fig. 22
P_D	Power Dissipation	62	W	T _c =25°C, T _J =150°C	Fig. 20
T _J , T _{STG}	Operating Junction and Storage Temperature	-55 to+150	°C		
T _L	Solder Temperature, 1.6mm from case for 10S	260	°C		
M _d	Mounting Torque, (M3 or 6-32 screw)	18.8	Nmlbf-in		

Electrical Characteristics (T_C=25°C unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note	
V _{(BR)DSS}	Train-SourceBreakdown Voltage	1700	/	/	V	Vsg=0V, I _D =100µA		
V	Gate Threshold Voltage	2.0	2.6	4.0	V	V _{DS} =V _{GS} , I _D =1.0mA	Fig. 11	
$V_{GS(th)}$		/	1.8	/	\ \	V _{DS} =V _{GS} , I _D =1.0mA, T _J =150°C		
I _{DSS}	Zero Gate Voltage Drain Current	/	1	100	μΑ	V _{DS} =1700V, V _{GS} =0V		
I _{GSS+}	Gate-Source Leakage Current	/	10	250	nA	V _{DS} =0V, V _{GS} =25V		
I _{GSS-}	Gate-Source Leakage Current	/	10	250	nA	V _{DS} =0V, V _{GS} =-10V		
_	Drain-Source On-State	/	650	850	mΩ	V_{GS} =20V, I_D =2A	Fig.	
$R_{DS(on)}$	Resistance	/	950	/	11177	V _{GS} =20V, I _D =2A, T _J =150℃	4,5,6	
		/	1.06	/		V _{DS} =20V, I _D =2A		
g_{fs}	Transconductance	/	1.14	/	S	V _{DS} =20V, I _D =2A, T _J =150°C	Fig. 7	
C _{iss}	Input Capacitance	/	198	/		V _{GS} =0V	Fig.	
C _{oss}	Output Capacitance	/	13	/	pF	V _{DS} =1000V		
C_{rss}	Reverse Transfer Capacitance	/	2.1	/		f=1MHz	17,18	
E _{oss}	C _{oss} Stored Energy	/	6.6	/	μJ	V _{AC} =25mV	Fig. 16	
Eon	Turn-On Switching Energy	/	5	/		V _{DS} =1200V, V _{GS} =-5V/20V		
E _{OFF}	Turn-Off Switching Energy	/	9.2	/	mJ	$I_D=2A, R_{G(ext)}=2.5\Omega$,		
$t_{d(on)}$	Turn-On Delay Time	/	13.8	/		L=1500µH		
t _r	Rise Time	/	22.8	/]	V _{DS} =1200V,		
t _{d(off)}	Turn-Off Delay Time	/	38	/	ns	V _{GS} =-5V/20V		
t _f	Fall Time	/	14	/		$I_D=2A,R_{G(ext)}=2.5\Omega,R_L=20\Omega$		
R _{G(int)}	Internal Gate Resistance	/	18	/	Ω	Ω f=1MHz, V _{AC} =25mV		
Q _{GS}	Gate to Source Charge	/	5.4	/		V _{DS} =1200V		
Q_{GD}	Gate to Drain Charge	/	7.6	/	nC	V _{GS} =-5V/20V	Fig. 12	
Q_G	Total Gate Charge	/	23	/		I _D =2A		

Reverse Diode Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
\/	Diada Famuard Valtaria	4.2	/		V _{GS} =-5V, I _{SD} =3.5A	Fig.
V_{SD}	Diode Forward Voltage	3.9	/	V	V _{GS} =-5V, I _{SD} =3.5A, T _J =150°C	8,9,10
Is	Continuous Diode Forward Current	/	7.0	Α	T _C =25°C	
t _{rr}	Reverse Recover Time	25	/	ns		
Q _{rr}	Reverse Recovery Charge	15	/	nC	V _R =1200V, I _{SD} =2A	
I _{rrm}	Peak Reverse Recovery Current	2.8	/	А		

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
$R_{\theta JC}$	Thermal Resistance from Junction to Case	1.8	/	°C/\\\		
$R_{\theta JA}$	Thermal Resistance from Junction to Ambient	/	40	°C/W		

Typical Performance

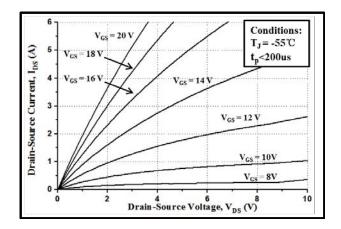


Figure 1. Output Characteristics T_J= -55°C

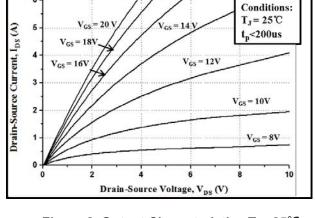


Figure 2. Output Characteristics T_J= 25°C

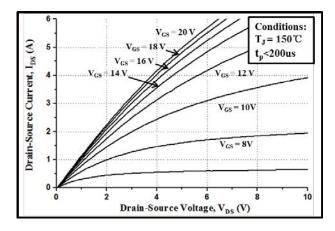


Figure 3. Output Characteristics T_J=150°C

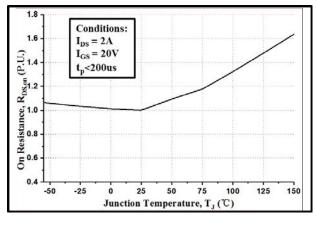


Figure 4. Normalized On-Resistance vs. Temperature

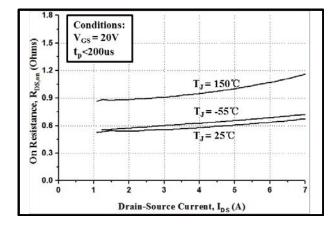


Figure 5. On-Resistance vs. Drain Current For Various Temperatures

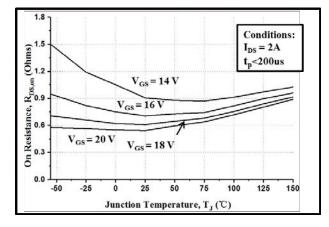


Figure 6. On-Resistance vs. Temperature For Various Gate Voltage

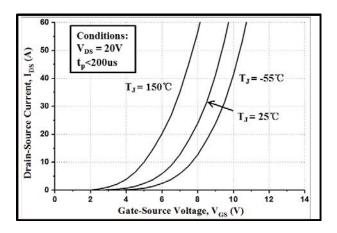


Figure 7. Transfer Characteristic for Various Junction Temperatures

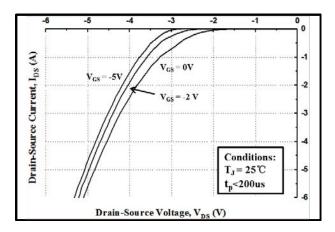


Figure 9. Body Diode Characteristics at 25℃

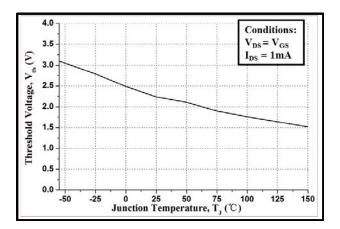


Figure 11. Threshold Voltage vs. Temperature

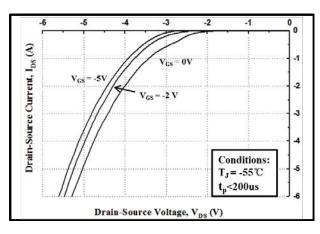


Figure 8. Body Diode Characteristic at -55°C

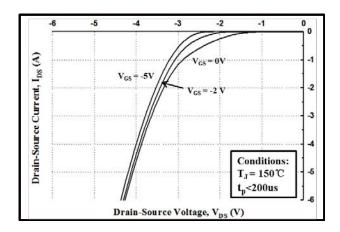


Figure 10. Body Diode Characteristics at 150 ℃

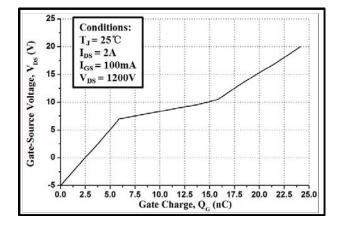


Figure 12. Gate Charge Characteristic

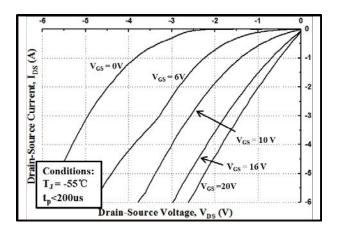


Figure 13. 3rd Quadrant Characteristics at -55℃

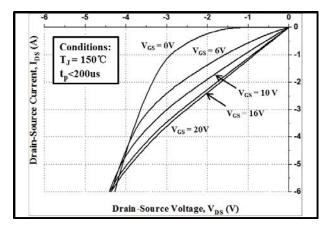


Figure 15. 3rd Quadrant Characteristics at 150 ℃

Figure 17. Capactances vs. Drain-Source Voltage (0 - 200V)

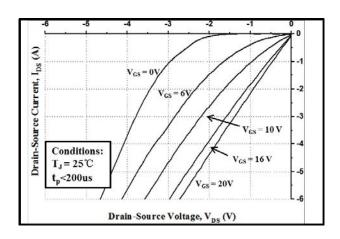


Figure 14. 3rd Quadrant Characteristics at 25℃

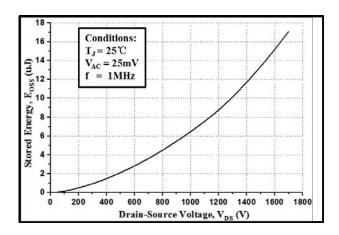


Figure 16. Output Capacitor Stored Energy

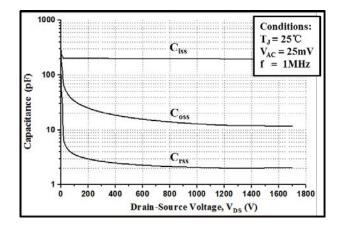


Figure 18. Capactances vs. Drain-Source Voltage (0 - 1700V)

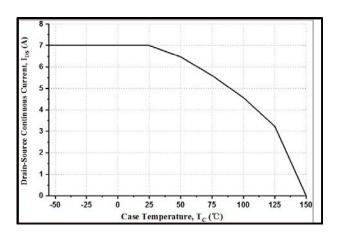


Figure 19. Continuous Drain Current Derating vs.

Case Temperature

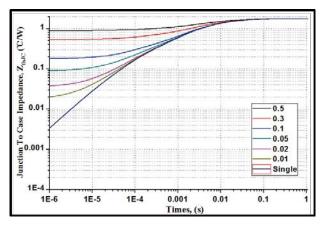


Figure 21. Transient Thermal Impedance (Junction - Case)

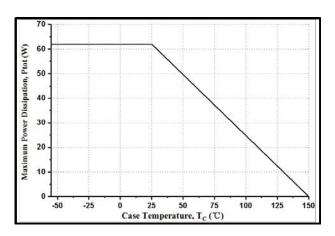
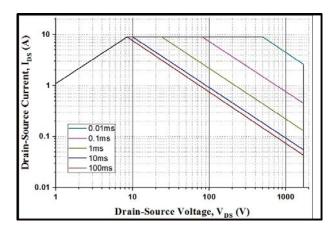
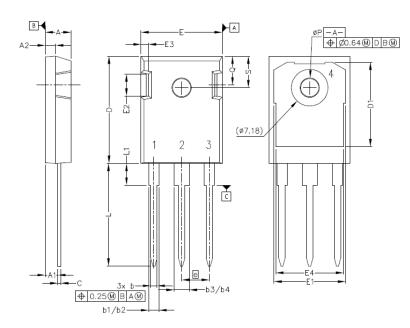
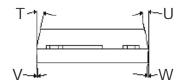


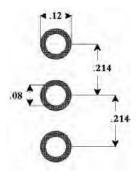
Figure 20. Maximum Power Dissipation
Derating vs. Case Temperature


Figure 22. Safe Operating Area

Package Dimensions

Package TO-247



Pinout Information:

- Pin 1 = Gate
- Pin 2, 4 = Drain
- Pin 3 = Source

Recommended Solder Pad Layout

TO-247

BOO	Inch	ies	Millimeters			
POS	Min	Max	Min	Max		
А	.190	.205	4.83	5.21		
A1	.090	.100	2.29	2.54		
A2	.075	.085	1.91	2.16		
b	.042	.052	1.07	1.33		
b1	.075	.095	1.91	2.41		
b2	.075	.085	1.91	2.16		
b3	.113	.133	2.87	3.38		
b4	.113	.123	2.87	3.13		
С	.022	.027	0.55	0.68		
D	.819	.831	20.80	21.10		
D1	.640	.695	16.25	17.65		
D2	.037	.049	0.95	1.25		
Е	.620	.635	15.75	16.13		
E1	.516	.557	13.10	14.15		
E2	.145	.201	3.68	5.10		
E3	.039	.075	1.00	1.90		
E4	.487	.529	12.38	13.43		
е	.214	BSC	5.44	BSC		
N	3	3	3	3		
L	.780	.800	19.81	20.32		
L1	.161	.173	4.10	4.40		
ØP	.138	.144	3.51	3.65		
Q	.216	.236	5.49	6.00		
S	.238	.248	6.04	6.30		
Т	9°	11°	9°	11°		
U	9°	11°	9°	11°		
V	2°	8°	2°	8°		
W	2°	8°	2° 8°			

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc.

 When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.