

General Description

AP2204R series are a set of Low Dropout Linear Regulator ICs implemented in CMOS technology. They can withstand voltage 22V. And they are available with lowvoltage drop and low quiescent current, widely used in audio, video and communication appliances.

Features

- Low Power Consumption
- Low Voltage Drop
- Low Temperature Coefficient
- Withstanding Voltage 22V
- Quiescent Current 1.5μA
- Output Voltage Accuracy: tolerance ±2%
- High output current: 300mA

Application

- Battery-powered Equipments
- Communication Equipments
- Audio/Video Equipments

Pin Configuration And Descriptions

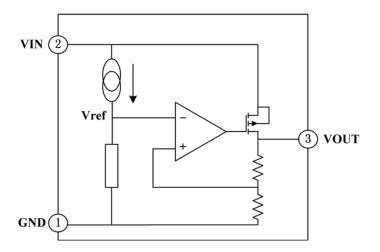
SOT-89

No.	Name	Functions Description			
1	Vin	Input			
2	GND	Ground			
3	Vouт	Output			

Order Information

Orderable Device	Package	Output Voltage	Packing Option
AP2204R-3.0TRG1	SOT-89	3.0V	3000/Reel
AP2204R-3.3TRG1	SOT-89	3.3V	3000/Reel
AP2204R-5.0TRG1	SOT-89	5.0V	3000/Reel

Absolute Maximum Ratings


Description	Symbol	Value Range	Unit
Limit Power Voltage	Vin	-0.3∼ + 25	V
Storage Temperature Range	Тѕтс	-50∼ + 125	°C
Operating Free-air Temperature Range	TA	-40∼ + 85	°C

Note:Stresses greater than those listed under "Absolute Maximum Ratingsmay" cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditionsis" not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Heat Dissipation

Description	Symbol	Package	Value Range	Unit
Thermal resistance	JA	SOT-89	200	°C/W
Power dissipation	Pw	SOT-89	500	mW

Block Diagram

DC Characteristics (unless otherwise noted TA= 25°C)

($V_{IN}=V_{OUT}+2.0V$, $C_{IN}=C_{L}=10uF$, $Ta=25^{\circ}C$, unless otherwise noted)

Series +3.0V OUTPUT

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Output Voltage	Vouт	VIN=VOUT+2.0V, IOUT=10mA	2.94	3.00	3.06	V
Output Current	І оит	VIN=VOUT+2.0V	300			mA
Load Regulation	∆Vо∪т	Vin=Vout+2.0V 1mA≤Iout≤50mA		37	100	mV
Voltage Drop	Vdif	lоuт=1mA,△Vоuт=2%		210	300	mV
Quiescent Current	Iss	No Load		1.5	3.0	uA
Line Regulation	riangle VOUT/ V OUT* $ riangle V$ IN	Vout+1.0V≪Vin≪30V, Iout=1mA			0.2	%/V
Input Voltage	Vin				22	V
Temperature Coefficient	△Vout/ △Ta*Vout	Vin=Vout+2.0V, Iout=10mA, -40°C≪Ta≪85°C		100		ppm/°C
Output Short Circuit Current	llim	Vout=0V		400		mA

Note:When $V_{IN}=V_{OUT}+2.0V$, as the output voltage declined 2%, the $V_{DIF}=V_{IN}-V_{OUT}$.

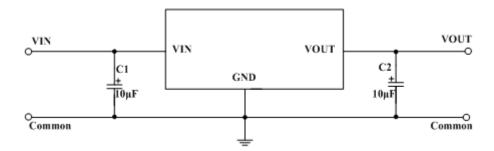
Series +3.3V OUTPUT

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Output Voltage	Vоит	Vin=Vout+2.0V, lout=10mA	3.234	3.30	3.366	V
Output Current	І оит	VIN=VOUT+2.0V	300			mA
Load Regulation	∆Vоит	Vin=Vout+2.0V 1mA≤lout≤50mA		37	100	mV
Voltage Drop	Vdif	lоuт=1mA,△Vоuт=2%		195	300	mV
Quiescent Current	Iss	No Load		1.5	3.0	uA
Line Regulation	riangle Vout/ V out* $ riangle V$ in	Vout+1.0V≪Vin≪30V, Iout=1mA			0.2	%/V
Input Voltage	Vin				22	V
Temperature Coefficient	△Vout/ △Ta*Vout	V _{IN} =V _{OUT} +2.0V, I _{OUT} =10mA, -40°C ≪T _A ≪85°C		100		ppm/°C
Output Short Circuit Current	llim	Vout=0V		400		mA

Note: When Vin=Vout+2.0V, as the output voltage declined 2%, the Vdif=Vin-Vout.

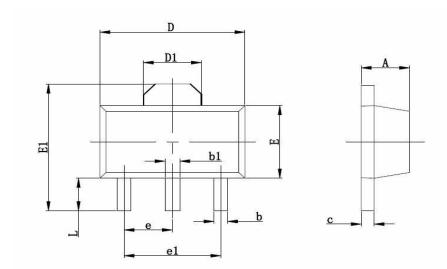
Series +5.0V OUTPUT

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Output Voltage	Vouт	Vin=Vout+2.0V, Iout=10mA	4.9	5.0	5.1	V
Output Current	І оит	VIN=VOUT+2.0V	300			mA
Load Regulation	∆Vоит	Vin=Vout+2.0V 1mA≤lout≤50mA		37	100	mV
Voltage Drop	Vdif	lоuт=1mA,△Vоuт=2%		170	300	mV
Quiescent Current	Iss	No Load		1.5	3.0	uA
Line Regulation	riangle VOUT/ V OUT* $ riangle V$ IN	Vout+1.0V≪Vin≪30V, Iout=1mA			0.2	%/V
Input Voltage	Vin				22	V
Temperature Coefficient	△Vout/ △Ta*Vout	Vin=Vout+2.0V, Iout=10mA, -40°C≪Ta≪85°C		100		ppm/°C
Output Short Circuit Current	llim	Vout=0V		400		mA


Note: When VIN=VOUT+2.0V, as the output voltage declined 2%, the VDIF=VIN-VOUT.

Function Description

AP2204R series are linear voltage regulator ICs withstanding 22V voltage. The series IC consists of a voltage reference, an error amplifier, a current limiter and a phase compensation circuit plus a driver transistor. The output stabilization capacitor is also compatible with low ESR ceramic capacitors. The over current protection circuit and the over voltage protection circuit are built-in. The protection circuit will operate wheb the output current or input voltage reaches limit level.


Application Circuit

Basic Circuits

SOT-89 Package Outline Dimensions

Symbol	Dimensions In Millimeters		Dimension	s In Inches	
Syllibol	Min	Max	Min	Max	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550	REF.	0.061	REF.	
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP.		0.060 TYP.		
e1	3.000	TYP.	0.118 TYP.		
L	0.900	1.200	0.035 0.047		

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.

 HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.